Skip to main content
Log in

Nitric Oxide(II) in the Biology of Chlorophyta

  • ROLE OF GASEOUS TRANSMITTERS NITRIC OXIDE AND HYDROGEN SULFIDE IN CELL REDOX REGULATION
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—NO is a gaseous signaling redox-active molecule that functions in various eukaryotes. However, its synthesis, turnover, and effects in cells are specific in plants in several aspects. Compared with higher plants, the role of NO in Chlorophyta has not been investigated enough. However, some of the mechanisms for controlling the levels of this signaling molecule have been characterized in model green algae. In Chlamydomonas reinhardtii, NO synthesis is carried out by a dual system of nitrate reductase and NO-forming nitrite reductase. Other mechanisms that might produce NO from nitrite are associated with components of the mitochondrial electron-transport chain. In addition, NO formation in some green algae proceeds by an oxidative mechanism similar to that in mammals. The recent discovery of L-arginine-dependent NO synthesis in the colorless alga Polytomella parva suggests the existence of a protein complex with enzyme activities that are similar to animal nitric oxide synthase. This latter finding paves the way for further research into potential members of the NO synthases family in Chlorophyta. Beyond synthesis, the regulatory processes to maintain intracellular NO levels are also an integral part for its function in cells. Members of the truncated hemoglobins family with dioxygenase activity can convert NO to nitrate, as was shown for C. reinhardtii. In addition, the implication of NO reductases in NO scavenging has also been described. Even more intriguing, unlike in animals, the typical NO/cGMP signaling module appears not to be used by green algae. S-nitrosylated glutathione, which is considered the main reservoir for NO, provides NO signals to proteins. In Chlorophyta, protein S-nitrosation is one of the key mechanisms of action of the redox molecule. In this review, we discuss the current state-of-the-art and possible future directions related to the biology of NO in green algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wendehenne D., Durner J., Klessig D.F. 2004. Nitric oxide: A new player in plant signalling and defence responses. Curr. Opin. Plant Biol. 7 (4), 449–455.

    Article  CAS  PubMed  Google Scholar 

  2. Wendehenne D., Pugin A., Klessig D.F., Durner J. 2001. Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci6 (4), 177–183.

    Article  CAS  PubMed  Google Scholar 

  3. Bredt D.S., Snyder S.H. 1992. Nitric oxide, a novel neuronal messenger. Neuron8 (1), 3–11.

    Article  CAS  PubMed  Google Scholar 

  4. Ignarro L.J., Buga G.M., Wood K.S., Byrns R.E., Chaudhuri G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 84 (24), 9265–9269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmer R.M., Ferrige A.G., Moncada S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327 (6122), 524–526.

    Article  CAS  PubMed  Google Scholar 

  6. Cox M.A., Bassi C., Saunders M.E., Nechanitzky R., Morgado-Palacin I., Zheng C., Mak T.W. 2020. Beyond neurotransmission: Acetylcholine in immunity and inflammation. J. Intern. Med. 287 (2), 120–133.

    Article  CAS  PubMed  Google Scholar 

  7. Astier J., Gross I., Durner J. 2018. Nitric oxide production in plants: An update. J. Exp. Bot. 69 (14), 3401–3411.

    Article  CAS  PubMed  Google Scholar 

  8. Kolbert Z.S., Barroso J.B., Brouquisse R., Corpas F.J., Gupta K.J., Lindermayr C., Loake G.J., Palma J.M., Petřivalský M., Wendehenne D., Hancock J.T. 2019. A forty year journey: The generation and roles of NO in plants. Nitric Oxide. 93, 53–70.

    Article  CAS  PubMed  Google Scholar 

  9. Yu M., Lamattina L., Spoel S.H., Loake G.J. 2014. Nitric oxide function in plant biology: A redox cue in deconvolution. New Phytol202 (4), 1142–1156.

    Article  CAS  PubMed  Google Scholar 

  10. He Y., Tang R.H., Hao Y., Stevens R.D., Cook C.W., Ahn S.M., Jing L., Yang Z., Chen L., Guo F., Fiorani F., Jackson R.B., Crawford N.M., Pei Z.M. 2004. Nitric oxide represses the Arabidopsis floral transition. Science305 (5692), 1968–1971.

    Article  CAS  PubMed  Google Scholar 

  11. Bethke P.C., Libourel I.G., Jones R.L. 2006. Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot. 57 (3), 517–526.

    Article  CAS  PubMed  Google Scholar 

  12. Sun C., Lu L., Liu L., Liu W., Yu Y., Liu X., Hu Y., Jin C., Lin X. 2014. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol. 201 (4), 1240–1250.

    Article  CAS  PubMed  Google Scholar 

  13. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. 2008. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59 (2), 165–176.

    Article  CAS  PubMed  Google Scholar 

  14. Qiao W., Fan L.M. 2008. Nitric oxide signaling in plant responses to abiotic stresses. J. Integr. Plant Biol. 50 (10), 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  15. Fancy N.N., Bahlmann A.K., Loake G.J. 2017. Nitric oxide function in plant abiotic stress. Plant Cell Environ. 40 (4), 462–472.

    Article  CAS  PubMed  Google Scholar 

  16. González-Gordo S., Bautista R., Claros M.G., Cañas A., Palma J.M., Corpas F.J. 2019. Nitric oxide-dependent regulation of sweet pepper fruit ripening. J. Exp. Bot. 70 (17), 4557–4570.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berger A., Boscari A., Frendo P., Brouquisse R. 2019. Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. J. Exp. Bot. 70 (17), 4505–4520.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta K.J., Fernie A.R., Kaiser W.M., van Dongen J.T. 2011. On the origins of nitric oxide. Trends Plant Sci. 16 (3), 160–168.

    Article  CAS  PubMed  Google Scholar 

  19. Astier J., Lindermayr C. 2012. Nitric oxide-dependent posttranslational modification in plants: An update. Int. J. Mol. Sci. 13 (11), 15193–15208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corpas F.J., Chaki M., Leterrier M., Barroso J.B. 2009. Protein tyrosine nitration: A new challenge in plants. Plant Signal. Behav. 4 (10), 920–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corpas F.J., Palma J.M., Río L.A.D., Barroso J.B. 2009. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol. 184, 9–14.

    Article  CAS  PubMed  Google Scholar 

  22. Foresi N., Correa-Aragunde N., Parisi G., Calo G., Salerno G., Lamattina L. 2010. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell. 22 (11), 3816–3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lapina T., Statinov V., Puzanskiy R., Ermilova E. 2022. Arginine-dependent nitric oxide generation and S-nitrosation in the non-photosynthetic unicellular alga Polytomella parva. Antioxidants. 11 (5), 949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Astier J., Mounier A., Santolini J., Jeandroz S., Wendehenne D. 2019. The evolution of nitric oxide signalling diverges between animal and green lineages. J. Exp. Bot. 70 (17), 4355–4364.

    Article  CAS  PubMed  Google Scholar 

  25. Chamizo-Ampudia A., Sanz-Luque E., Llamas A., Galvan A., Fernandez E. 2017. Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci. 22 (2), 163–174.

    Article  CAS  PubMed  Google Scholar 

  26. Mallick N., Rai L.C., Mohn F.H., Soeder C.J. 1999. Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum. Chemosphere. 39 (10), 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  27. Stuehr D.J., Santolini J., Wang Z.Q., Wei C.C., Adak S. 2004. Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem. 279 (35), 36167–36170.

    Article  CAS  PubMed  Google Scholar 

  28. Daff S. 2010. NO synthase: Structures and mechanisms. Nitric Oxide. 23 (1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  29. Li H., Poulos T.L. 2005. Structure–function studies on nitric oxide synthases. J. Inorg. Biochem. 99 (1), 293–305.

    Article  CAS  PubMed  Google Scholar 

  30. Di Dato V., Musacchia F., Petrosino G., Patil S., Montresor M., Sanges R., Ferrante M.I. 2015. Transcriptome sequencing of three pseudo-nitzschia species reveals comparable gene sets and the presence of nitric oxide synthase genes in diatoms. Sci. Rep. 5 (1), 12329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar A., Castellano I., Patti F.P., Palumbo A., Buia M.C. 2015. Nitric oxide in marine photosynthetic organisms. Nitric Oxide. 47, 34–39.

    Article  CAS  PubMed  Google Scholar 

  32. Weisslocker-Schaetzel M., André F., Touazi N., Foresi N., Lembrouk M., Dorlet P., Frelet-Barrand A., Lamattina L., Santolini J. 2017. The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci. 265, 100–111.

    Article  CAS  PubMed  Google Scholar 

  33. Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K.S., Wendehenne D. 2016. Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci. Signal. 9 (417), re2.

    Article  PubMed  Google Scholar 

  34. Santolini J., André F., Jeandroz S., Wendehenne D. 2017. Nitric oxide synthase in plants: Where do we stand? Nitric Oxide. 63, 30–38.

    Article  CAS  PubMed  Google Scholar 

  35. Foresi N., Mayta M.L., Lodeyro A.F., Scuffi D., Correa-Aragunde N., García-Mata C., Casalongué C., Carrillo N., Lamattina L. 2015. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J. 82 (5), 806–821.

    Article  CAS  PubMed  Google Scholar 

  36. Chatelain P., Astier J., Wendehenne D., Rosnoblet C., Jeandroz S. 2021. Identification of partner proteins of the algae Klebsormidium nitens NO synthases: Toward a better understanding of NO signaling in eukaryotic photosynthetic organisms. Front. Plant Sci. 12, 3068.

    Article  Google Scholar 

  37. Tun N.N., Santa-Catarina C., Begum T., Silveira V., Handro W., Floh E.I.S., Scherer G.F. 2006. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 47 (3), 346–354.

    Article  CAS  PubMed  Google Scholar 

  38. Campbell M.G., Smith B.C., Potter C.S., Carragher B., Marletta M.A. 2014. Molecular architecture of mammalian nitric oxide synthases. Proc. Natl. Acad. Sci. U. S. A. 111 (35), E3614–E3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Desikan R., Griffiths R., Hancock J., Neill S. 2002. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 99 (25), 16314–16318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamasaki H., Sakihama Y., Takahashi S. 1999. An alternative pathway for nitric oxide production in plants: New features of an old enzyme. Trends Plant Sci. 4 (4), 128–129.

    Article  CAS  PubMed  Google Scholar 

  41. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53 (366), 103–110.

    Article  CAS  PubMed  Google Scholar 

  42. Tejada-Jimenez M., Llamas A., Galván A., Fernández E. 2019. Role of nitrate reductase in NO production in photosynthetic eukaryotes. Plants. 8 (3), 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tischner R., Planchet E., Kaiser W.M. 2004. Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett. 576 (1–2), 151–155.

    Article  CAS  PubMed  Google Scholar 

  44. Chamizo-Ampudia A., Sanz-Luque E., Llamas Á., Ocaña-Calahorro F., Mariscal V., Carreras A., Barroso J.B., Galván A., Fernández E. 2016. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 39 (10), 2097–2107.

    Article  CAS  PubMed  Google Scholar 

  45. Minaeva E., Zalutskaya Z., Filina V., Ermilova E. 2017. Truncated hemoglobin 1 is a new player in Chlamydomonas reinhardtii acclimation to sulfur deprivation. PLoS One. 12 (10), e0186851.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zalutskaya Z., Korkina S., Ermilova E. 2023. Second nitrate reductase of Dunaliella salina: Functional redundancy or greatly? Protistology. 17 (1), 16–29.

    Article  Google Scholar 

  47. Hemschemeier A., Düner M., Casero D., Merchant S.S., Winkler M., Happe T. 2013. Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 110 (26), 10854–10859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gupta K.J., Igamberdiev A.U. 2011. The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion. 11 (4), 537–543.

    Article  CAS  PubMed  Google Scholar 

  49. Vishwakarma A., Kumari A., Mur L.A., Gupta K.J. 2018. A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production. Free Radical Biol. Med. 122, 40–51.

    Article  CAS  Google Scholar 

  50. Ostroukhova M., Ermilova E. 2019. New insights into NO generation and AOX1 upregulation in Chlamydomonas. Protistology. 13 (1), 19–25.

    Article  Google Scholar 

  51. Sanz-Luque E., Chamizo-Ampudia A., Llamas A., Galvan A., Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6, 899.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stewart J.J., Coyne K.J. 2011. Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin. Plant Mol. Biol. 77, 565–575.

    Article  CAS  PubMed  Google Scholar 

  53. Filina V., Grinko A., Ermilova E. 2019. Truncated hemoglobins 1 and 2 are implicated in the modulation of phosphorus deficiency-induced nitric oxide levels in Chlamydomonas. Cells. 8 (9), 947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grinko A., Alqoubaili R., Lapina T., Ermilova E. 2021. Truncated hemoglobin 2 modulates phosphorus deficiency response by controlling of gene expression in nitric oxide-dependent pathway in Chlamydomonas reinhardtii. Planta. 254, 1–15.

    Article  Google Scholar 

  55. Plouviez M., Wheeler D., Shilton A., Packer M.A., McLenachan P.A., Sanz-Luque E., Ocaña-Calahorro F., Fernández E., Guieysse B. 2017. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii. Plant J. 91 (1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  56. Plouviez M., Shilton A., Packer M.A., Guieysse B. 2019. Nitrous oxide emissions from microalgae: Potential pathways and significance. J. Appl. Phycol. 31, 1–8.

    Article  CAS  Google Scholar 

  57. Burlacot A., Richaud P., Gosset A., Li-Beisson Y., Peltier G. 2020. Algal photosynthesis converts nitric oxide into nitrous oxide. Proc. Natl. Acad. Sci. U. S. A. 117 (5), 2704–2709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zalutskaya Z., Dukhnov S., Leko N., Ermilova E. 2021. Nitric oxide levels and CYP55 expression in Chlamydomonas reinhardtii under normoxia and hypoxia. Protistology. 15 (3), 153–160.

    Google Scholar 

  59. Frungillo L., Skelly M.J., Loake G.J., Spoel S.H., Salgado I. 2014. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat. Commun. 5 (1), 5401.

    Article  CAS  PubMed  Google Scholar 

  60. Jahnová J., Luhová L., Petřivalský M. 2019. S-nitrosoglutathione reductase—the master regulator of protein S-nitrosation in plant NO signaling. Plants. 8 (2), 48.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tagliani A., Rossi J., Marchand C.H., De Mia M., Tedesco D., Gurrieri L., Meloni M., Falini G., Trost P., Lemaire S.D., Fermani S., Zaffagnini M. 2021. Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol. 38, 101806.

    Article  CAS  PubMed  Google Scholar 

  62. Martínez-Ruiz A., Cadenas S., Lamas S. 2011. Nitric oxide signaling: Classical, less classical, and nonclassical mechanisms. Free Radic. Biol. Med. 51 (1), 17–29.

    Article  PubMed  Google Scholar 

  63. de Montaigu A., Sanz-Luque E., Galvan A., Fernandez E. 2010. A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. Plant Cell. 22 (5), 1532–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Horst B.G., Stewart E.M., Nazarian A.A., Marletta M.A. 2019. Characterization of a carbon monoxide-activated soluble guanylate cyclase from Chlamydomonas reinhardtii. Biochemistry. 58 (17), 2250–2259.

    Article  CAS  PubMed  Google Scholar 

  65. Astier J., Rossi J., Chatelain P., Klinguer A., Besson-Bard A., Rosnoblet C., Jeandroz S., Nicolas-Francès V., Wendehenne D. 2021. Nitric oxide production and signalling in algae. J. Exp. Bot. 72 (3), 781–792.

    Article  CAS  PubMed  Google Scholar 

  66. Smith B.C., Marletta M.A. 2012. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr. Opin. Chem. Biol. 16 (5–6), 498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Morisse S., Zaffagnini M., Gao X.H., Lemaire S.D., Marchand C.H. 2014. Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid. Redox Signal. 21 (9), 1271–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zaffagnini M., Michelet L., Sciabolini C., di Giacinto N., Morisse S., Marchand C.H., Trost P., Fermani S., Lemaire S.D. 2014. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii. Mol. Plant. 7 (1), 101–120.

    Article  CAS  PubMed  Google Scholar 

  69. Berger H., De Mia M., Morisse S., Marchand C.H., Lemaire S.D., Wobbe L., Kruse O. 2016. A light switch based on protein S-nitrosylation fine-tunes photosynthetic light harvesting in Chlamydomonas. Plant Physiol. 171 (2), 821–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanz-Luque E., Ocaña-Calahorro F., Llamas A., Galvan A., Fernandez E. 2013. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J. Exp. Bot. 64 (11), 3373–3383.

    Article  CAS  PubMed  Google Scholar 

  71. Zalutskaya Z., Kochemasova L., Ermilova E. 2018. Dual positive and negative control of Chlamydomonas PII signal transduction protein expression by nitrate/nitrite and NO via the components of nitric oxide cycle. BMC Plant Biol. 18, 1–10.

    Article  Google Scholar 

  72. Wei L., Derrien B., Gautier A., Houille-Vernes L., Boulouis A., Saint-Marcoux D., Malnoë A., Rappaport F., de Vitry C., Vallon O., Choquet Y., Wollman F.A. 2014. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. Plant Cell. 26 (1), 353–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Mia M., Lemaire S.D., Choquet Y., Wollman F.A. 2019. Nitric oxide remodels the photosynthetic apparatus upon S-starvation in Chlamydomonas reinhardtii. Plant Physiol. 179 (2), 718–731.

    Article  CAS  PubMed  Google Scholar 

  74. Zalutskaya Z., Derkach V., Puzanskiy R., Ermilova E. 2020. Impact of nitric oxide on proline and putrescine biosynthesis in Chlamydomonas via transcriptional regulation. Biol. Plant. 64, 653–659.

    Article  Google Scholar 

  75. Chen X., Tian D., Kong X., Chen Q., Ef A., Hu X., Jia A. 2016. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta. 244, 651–669.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-14-00017 to E.E.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ermilova.

Ethics declarations

Conflict of interests. The author declares that she has no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermilova, E.V. Nitric Oxide(II) in the Biology of Chlorophyta. Mol Biol 57, 921–928 (2023). https://doi.org/10.1134/S0026893323060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060055

Keywords:

Navigation