Skip to main content
Log in

Job rotation or specialization? A dynamic matching model analysis

  • Original Paper
  • Published:
Review of Economic Design Aims and scope Submit manuscript

Abstract

Which is better for a firm, job rotation or specialization, can be considered as an endogenously formed worker-indivisible job matching problem. We model this problem as a firm’s profit maximization problem under uncertainty, with and without overlapping generations. In both models, we show that among all possible job allocations, the rotation and specialization schemes are the only variations that can be optimal in terms of profits. Moreover, the rotation scheme is better when the productivity difference between post- and under-training workers is smaller, the uncertainty about job continuation in the future is more significant, or the slope of seniority wages is larger. The results indicate that firms in different environments prefer different worker-job matchings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Antler (2015) studied an endogenous preference formation in Gale and Shapley’s (1962) two-sided matching market where the reporting preferences by agents are affected by reporting behavior of agents on the other side.

  2. As will be mentioned later, other related characteristics of the Japanese employment system are lifetime employment and seniority wages; those of the U.S. employment system are non-lifetime employment and non-seniority wages.

  3. As will be explained in Sect. 2, as uncertainty we focus on job loss which would be directly related to job rotation as indicated by the evidence of Nissan (Ito and Hoshi 2020).

  4. As will be mentioned in Sect. 2, this modeling of training is consistent with the training literature and supported by several empirical studies. For example, see Konings and Vanormelingen (2015) and Zwick (2002).

  5. Evidence indicates that lifetime employment still remains in Japan, though it has recently become tenuous for some young cohorts. See Ito and Hoshi (2020) for a survey of recent evidence.

  6. On a related note, Anderson (2012) constructed a model of a worker’s choice to be a specialist or generalist, and showed that it is rational to be a generalist when there are barriers to working on problems in other disciplines but problems are relatively simple.

  7. Meyer (1994) analyzed the relationship between task assignments and promotion. Although we do not explicitly consider promotion in our model, we can take it into account by modifying our assumption regarding wages.

  8. In the same spirit, Iwai (1999, 2014) provided a unified theory of the Japanese and U.S. corporation systems. Aoki and Okuno (1996) also provided a unified explanation for the Japanese and U.S. systems; however, they did not involve job rotation versus specialization.

  9. This implies that the event of one job loss is not independent of another, making the job assignment problem well-defined. Otherwise, there would be no room for job assignments.

  10. This is the rule already explained in (4).

References

  • Anderson KA (2012) Specialists and generalists: equilibrium skill acquisition decision in problem-solving populations. J Econ Behav Organ 84:463–473

    Article  Google Scholar 

  • Antler Y (2015) Two-sided matching with endogenous preferences. Am Econ J Microecon 7:241–258

    Article  Google Scholar 

  • Aoki M, Okuno M (1996) Comparative institutional analysis of economic systems. University of Tokyo Press (in Japanese)

    Google Scholar 

  • Bloch F, Cantala D (2013) Markovian assignment rules. Soc Choice Welf 40:1–25

    Article  Google Scholar 

  • Brünner T, Friebel G, Holden R, Prasad S (2021) Incentives to discover talent. J Law Econ Organ 38:309–344

    Article  Google Scholar 

  • Campion MA, Cheraskin L, Stevens MJ (1994) Career-related antecedents and the outcomes of job rotation. Acad Manag J 37:1518–1542

    Article  Google Scholar 

  • Carmichael HL, MacLeod WB (1993) Multiskilling, technical change and the Japanese firm. Econ J 103:142–160

    Article  Google Scholar 

  • Corbae D, Temzelides T, Wright R (2003) Directed matching and monetary exchange. Econometrica 71:731–756

    Article  Google Scholar 

  • Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon 69:9–15

    Article  Google Scholar 

  • Ito T, Hoshi T (2020) The Japanese economy, 2nd edn. The MIT Press

    Google Scholar 

  • Iwai K (1999) Persons, things and corporations: the corporate personality controversy and comparative corporate governance. Am J Comp Law 47:583–632

    Article  Google Scholar 

  • Iwai K (2014) Capitalism and cultures: universality and particularity of the corporate system across societies. The Clarke Lecture, Cornell Law School

    Google Scholar 

  • Kiyotaki N, Wright R (1989) On money as a medium of exchange. J Polit Econ 97:927–954

    Article  Google Scholar 

  • Konings J, Vanormelingen S (2015) The impact of training on productivity and wages: firm-level evidence. Rev Econ Stat 97:485–497

    Article  Google Scholar 

  • Kurino M (2014) House allocation with overlapping generations. Am Econ J Microecon 6:258–289

    Article  Google Scholar 

  • Li F, Tian C (2013) Directed search and job rotation. J Econ Theory 148:1268–1281

    Article  Google Scholar 

  • Meyer MA (1994) The dynamics of learning with team production: implications for task assignment. Q J Econ 109:1157–1184

    Article  Google Scholar 

  • Ortega J (2001) Job rotation as a learning mechanism. Manag Sci 47:1361–1370

    Article  Google Scholar 

  • Zwick T (2002) Continuous training and firm productivity in Germany. ZEW Discussion Paper No. 02-50

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morimitsu Kurino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank an anonymous referee, Onur Kesten, Eiichi Miyagawa, and Suraj Prasad for their insightful comments and participants at the JEA Meeting for their comments. This research is supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research (c) No. 16K03547 and Grant-in-Aid for Challenging Research (Pioneering) No. 20K20279, and by AMED under Grant Number JP21zf0127005. We have no relevant financial or non-financial interests to disclose. All remaining errors are our own.

Appendices

A Proof of Proposition 1

We complete the proof of Proposition 1 by checking the profit comparison in the following three cases.

Case 1: \(p>\frac{(1-\lambda )-2(w-w^{*})}{2\delta (2^{\alpha }-1-w)}\). We show that for each \(k\in \{1,\ldots ,8\}\), \(\pi (x^{R1})>\pi (x^{k})\). First, under Claim 1, \(\pi (x^{R1})>\pi (x^{S1})\). Second, from Table 2, for each \(k\in \{1,\ldots ,8\}\setminus \{2,7\}\), \(\pi (x^{R1})>\pi (x^{k})\). It remains to show the inequality for \(k\in \{2,7\}\).

$$\begin{aligned} \pi (x^{R1})-\pi (x^{2})= & {} \pi (x^{R1})-\pi (x^{7})=\lambda +\delta \{\lambda -\lambda ^{1/2}+w-w^{*}\}+\delta ^{2}p(2^{\alpha }-1-w)\\> & {} \lambda +\delta \{\lambda -\lambda ^{1/2}+w-w^{*}\}\\{} & {} +\frac{\delta }{2}\{(1-\lambda )-2(w-w^{*})\}=\lambda +\delta \left( \frac{1}{2}-\lambda ^{1/2}+\frac{\lambda }{2}\right) , \end{aligned}$$

where the inequality follows from \(p>\frac{(1-\lambda )-2(w-w^{*})}{2\delta (2^{\alpha }-1-w)}\). Let us define the function \(f:[0,1]\rightarrow \mathbb {R}\) by \(f(\lambda )=\lambda +\delta \left( \frac{1}{2}-\lambda ^{1/2}+\frac{\lambda }{2}\right) .\) Then, \(f(0)=\frac{\delta }{2}<1=f(1)\), \(f^{\prime }(\lambda )=1+\frac{\delta }{2}\left( 1-\frac{1}{\lambda ^{1/2}}\right) \), and \(f^{\prime \prime }(\lambda )=\frac{\delta }{4}\lambda ^{-3/2}>0\). Thus, function f is concave and there is a unique \(\lambda ^{*}\) such that \(f^{\prime }(\lambda ^{*})=0\), i.e., \(\lambda ^{*}=\left( \frac{\delta }{\delta +2}\right) ^{2}\in (0,1)\). Because our calculation gives us \(f(\lambda ^{*})=\frac{2\delta ^{2}+4\delta }{2(2+\delta )^{2}}>0,\) we can conclude that for any \(\lambda \in (0,1)\), \(f(\lambda )>0\). Thus, \(\pi (x^{R1})>\pi (x^{2})\) and \(\pi (x^{R1})>\pi (x^{7})\).

Case 2: \(p<\frac{(1-\lambda )-2(w-w^{*})}{2\delta (2^{\alpha }-1-w)}\). We show that for each \(k\in \{1,\ldots ,8\}\), \(\pi (x^{S1})>\pi (x^{k})\). First, under Claim 1, \(\pi (x^{S1})>\pi (x^{R1})\). Second, from Table 2, for each \(k\in \{1,\ldots ,8\}\setminus \{2,7\}\), \(\pi (x^{R1})>\pi (x^{k})\), and thus \(\pi (x^{S1})>\pi (x^{k})\). It remains to show the inequality for \(k\in \{2,7\}\).

$$\begin{aligned} \pi (x^{S1})-\pi (x^{2})= & {} \pi (x^{S1})-\pi (x^{7})=\lambda +\delta \{1-\lambda ^{1/2}-(w-w^{*})\}-\delta ^{2}p(2^{\alpha }-1-w)\nonumber \\> & {} \lambda +\delta \{1-\lambda ^{1/2}-(w-w^{*})\}-\frac{\delta }{2}\{(1-\lambda )-2(w-w^{*})\}=f(\lambda ), \end{aligned}$$
(5)

where the inequality follows from \(p<\frac{(1-\lambda )-2(w-w^{*})}{2\delta (2^{\alpha }-1-w)}\). As shown in Case 1, for each \(\lambda \in (0,1)\), \(f(\lambda )>0\). Thus, under inequality (5), \(\pi (x^{S1})>\pi (x^{2})\) and \(\pi (x^{S1})>\pi (x^{7})\).

Case 3: \(p=\frac{(1-\lambda )-2(w-w^{*})}{2\delta (2^{\alpha }-1-w)}\). The last part of the proposition is now straightforward from the arguments in cases 1 and 2.\(\square \)

B Proof of Proposition 2

To prove Proposition 2, it remains to show lemmas 1 and 2. We start with some preliminaries.

1.1 B.1 Preliminaries

We need to calculate the value function depending on the states \(\omega ^{O}\) and \(\omega ^{A}\). Note that \(\omega ^{O}\) is the set of assignable jobs at some period, and \(\omega ^{A}\) is the set of available jobs at some period. For the simplicity of notation, when we write the state \((\omega ^{O},\omega ^{A})\), for example, we denote \((\omega ^{O},\omega ^{A})=(\emptyset ,A;A,B)\) for \((\{\emptyset ,A\};\{A,B\})\) where we omit the braces for sets. Thus, for value functions, we denote \(V(\omega ^{O},\omega ^{A})=V(\emptyset ,A;A,B)\) for \(V(\{\emptyset ,A\},\{A,B\})\). Because of the symmetric roles of jobs A and B, we only need to calculate the value function for the following five cases. (1) \(V(\emptyset ;A)=V(\emptyset ;B)=V(\emptyset ,B;A)=V(\emptyset ,A;B)\), (2) \(V(\emptyset ;A,B)\), (3) \(V(\emptyset ,A;A)=V(\emptyset ,B;B)=V(\emptyset ,A,B;B)=V(\emptyset ,A,B;A)\), (4) \(V(\emptyset ,A;A,B)=V(\emptyset ,B;A,B)\), and (5) \(V(\emptyset ,A,B;A,B)\).

1.1.1 B.1.1 Calculation of \(V(\emptyset ;A)=V(\emptyset ;B)=V(\emptyset ,B;A)=V(\emptyset ,A;B)\)

We calculate \(V(\emptyset ;A)\), which is obviously equal to \(V(\emptyset ;B)\), \(V(\emptyset ,B;A)\), and \(V(\emptyset ,A;B)\). We have the following three candidates for \(V(\emptyset ;A)\), depending on period-t allocations.

\(V^{11}\)

\(V^{12}\)

\(V^{13}\)

 

Alloc. at t

States at \(t+1\)

 

Alloc. at t

States at \(t+1\)

 

Alloc. at t

States at \(t+1\)

 

\(s=1\)

\(s=2\)

  

\(s=1\)

\(s=2\)

  

\(s=1\)

\(s=2\)

 

\(a^{t-1}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{A}=\{A\}\)

\(a^{t-1}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{A}=\{A\}\)

\(a^{t-1}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{A}=\{A\}\)

\(a^{t}\)

\(A^{*}\)

A

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(a^{t}\)

\(\emptyset \) (\(A^{*}\))

\(A^{*}\) (\(\emptyset \))

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(a^{t}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{O}=\{\emptyset \}\)

Denote

$$\begin{aligned} V^{11}= & {} \pi (\emptyset ,A^{*};A)+\pi (\emptyset ,A;A)+\delta V(\emptyset ,A;A),\\ V^{12}= & {} \pi (\emptyset ,\emptyset ;A)+\pi (\emptyset ,A^{*};A)+\delta V(\emptyset ,A;A)\text { or }\pi (\emptyset ,A^{*};A)+\pi (\emptyset ,\emptyset ;A)+\delta V(\emptyset ,A;A),\\ V^{13}= & {} \pi (\emptyset ,\emptyset ;A)+\pi (\emptyset ,\emptyset ;A)+\delta V(\emptyset ;A). \end{aligned}$$

Claim 2

\(V^{11}>V^{12}\) and \(V^{11}>V^{13}\). Thus, \(V(\emptyset ;A)=V^{11}\).

Proof

First, \(V^{11}-V^{12}=\pi (\emptyset ,A;A)-\pi (\emptyset ,\emptyset ;A)\). Thus, since \(\pi (\emptyset ,A;A)>\pi (\emptyset ,\emptyset ;A)\) according to Assumption 8, we have \(V^{11}>V^{12}\). We next show \(V^{11}>V^{13}\). Note that \(V^{11}-V^{13}=\{\pi (\emptyset ,A^{*};A)-\pi (\emptyset ,\emptyset ;A)\}+\{\pi (\emptyset ,A;A)-\pi (\emptyset ,\emptyset ;A)\}+\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}.\) By Assumption 8, \(\pi (\emptyset ,A^{*};A)>\pi (\emptyset ,\emptyset ;A)\) and \(\pi (\emptyset ,A;A)>\pi (\emptyset ,\emptyset ;A)\). Also, as any allocation at state \((\emptyset ;A)\) is possible at state \((\emptyset ,A;A)\), we have \(V(\emptyset ,A;A)\ge V(\emptyset ;A)\). Thus, \(V^{11}>V^{13}\). \(\square \)

Thus, we have

$$\begin{aligned} V(\emptyset ;A)=V^{11}=\pi (\emptyset ,A^{*};A)+\pi (\emptyset ,A;A)+\delta V(\emptyset ,A;A). \end{aligned}$$
(6)

Since \(V(\emptyset ,A;A)=\frac{\pi (A,A^{*};A)+\pi (A,A;A)}{1-\delta }\) (this will be shown in Section B.1.3),

$$\begin{aligned} V(\emptyset ;A)=\pi (\emptyset ,A^{*};A)+\pi (\emptyset ,A;A)+\frac{\delta }{1-\delta }\left( \pi (A,A^{*};A)+\pi (A,A;A)\right) . \end{aligned}$$

1.1.2 B.1.2 Calculation of \(V(\emptyset ;A,B)\)

We have the following three candidates for \(V(\emptyset ;A,B)\), depending on period-t allocations.

\(V^{21}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(B^{*}\)

B

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

$$\begin{aligned}{} & {} V^{21}=\pi (\emptyset ,B^{*};A,B)+\pi (\emptyset ,B;A,B)+(1-2p)\delta V(\emptyset ,B;A,B)\\{} & {} +p\delta V(\emptyset ,B;A)+p\delta V(\emptyset ,B;B). \end{aligned}$$

\(V^{22}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(A^{*}\)

A

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

$$\begin{aligned} V^{22}= & {} \pi (\emptyset ,A^{*};A,B)+\pi (\emptyset ,A;A,B)+(1-2p)\delta V(\emptyset ,A;A,B)\\{} & {} +p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,A;B). \end{aligned}$$

\(V^{23}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(A^{*}\)

\(B^{*}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

$$\begin{aligned} V^{23}= & {} \pi (\emptyset ,A^{*};A,B)+\pi (\emptyset ,B^{*};A,B)\\{} & {} +(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A,B;A)+p\delta V(\emptyset ,A,B;B)\\= & {} \pi (\emptyset ,A^{*};A,B)+\pi (\emptyset ,B^{*};A,B)\\{} & {} +(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B). \end{aligned}$$

Claim 3

\(V^{23}>V^{21}=V^{22}\). Thus, \(V(\emptyset ;A,B)=V^{23}\).

Proof

First, \(V^{21}=V^{22}\) by symmetry. Next, we have

$$\begin{aligned} V^{23}-V^{22}= & {} \pi (\emptyset ,B^{*};A,B)-\pi (\emptyset ,A;A,B)\\{} & {} +(1-2p)\delta (V(\emptyset ,A,B;A,B)-V(\emptyset ,A;A,B))\\{} & {} +p\delta (V(\emptyset ,B;B)-V(\emptyset ,A;B))\\= & {} -w^{*}+w+(1-2p)\delta (V(\emptyset ,A,B;A,B)-V(\emptyset ,A;A,B))\\{} & {} +p\delta (V(\emptyset ,B;B)-V(\emptyset ;B))> 0. \end{aligned}$$

The last inequality follows from the fact that \(w>w^{*}\), \(V(\emptyset ,A,B;A,B)\ge V(\emptyset ,A;A,B)\), and \(V(\emptyset ,B;B)\ge V(\emptyset ;B)\). \(\square \)

1.1.3 B.1.3 Calculation of \(V(\emptyset ,A;A)=V(\emptyset ,B;B)=V(\emptyset ,A,B;B)=V(\emptyset ,A,B;A)\)

We calculate \(V(\emptyset ,A;A)\), which is obviously equal to \(V(\emptyset ,B;B)\), \(V(\emptyset ,A,B;B)\), and \(V(\emptyset ,A,B;A)\). We have the following three candidates for \(V(\emptyset ,A;A)\), depending on period-t allocations.

\(V^{31}\)

   

\(V^{32}\)

   

\(V^{33}\)

   
 

Alloc. at t

States at \(t+1\)

 

Alloc. at t

States at \(t+1\)

 

Alloc. at t

States at \(t+1\)

 

\(s=1\)

\(s=2\)

  

\(s=1\)

\(s=2\)

  

\(s=1\)

\(s=2\)

 

\(a^{t-1}\)

A

A

\(\omega _{t+1}^{A}=\{A\}\)

\(a^{t-1}\)

A

A

\(\omega _{t+1}^{A}=\{A\}\)

\(a^{t-1}\)

A

A

\(\omega _{t+1}^{A}=\{A\}\)

\(a^{t}\)

\(A^{*}\)

A

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(a^{t}\)

\(\emptyset \) (\(A^{*}\))

\(A^{*}\) (\(\emptyset \))

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(a^{t}\)

\(\emptyset \)

\(\emptyset \)

\(\omega _{t+1}^{O}=\{\emptyset \}\)

$$\begin{aligned} V^{31}= & {} \pi (A,A^{*};A)+\pi (A,A;A)+\delta V(\emptyset ,A;A),\\ V^{32}= & {} \pi (A,\emptyset ;A)+\pi (A,A^{*};A)+\delta V(\emptyset ,A;A),\\ V^{33}= & {} \pi (A,\emptyset ;A)+\pi (A,\emptyset ;A)+\delta V(\emptyset ;A). \end{aligned}$$

Claim 4

\(V^{31}>V^{32}\) and \(V^{31}>V^{33}\). Thus, \(V(\emptyset ,A;A)=V^{31}\).

Proof

First, \(V^{31}-V^{32}=\pi (A,A;A)-\pi (A,\emptyset ;A)\). Then, since \(\pi (A,A;A)>\pi (A,\emptyset ;A)\) under Assumption 8, we have \(V^{31}>V^{32}\). Next, we show \(V^{31}>V^{33}\). Note that \(V^{31}-V^{33}=\{\pi (A,A;A)-\pi (A,\emptyset ;A)\}+\{\pi (A,A^{*};A)-\pi (A,\emptyset ;A)\}+\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}.\) Under Assumption 8, \(\pi (A,A;A)>\pi (A,\emptyset ;A)\) and \(\pi (A,A^{*};A)>\pi (A,\emptyset ;A)\). Moreover, \(V(\emptyset ,A;A)\ge V(\emptyset ;A)\). Hence, \(V^{31}>V^{33}\). \(\square \)

Thus, we have

$$\begin{aligned}{} & {} V(\emptyset ,A;A)=V^{31}=\pi (A,A^{*};A)+\pi (A,A;A)+\delta V(\emptyset ,A;A)\nonumber \\{} & {} =\frac{\pi (A,A^{*};A)+\pi (A,A;A)}{1-\delta }. \end{aligned}$$
(7)

1.1.4 B.1.4 Calculation of \(V(\emptyset ,A;A,B)=V(\emptyset ,B;A,B)\)

We calculate \(V(\emptyset ,A;A,B)\), which is obviously equal to \(V(\emptyset ,B;A,B)\). We have the following three candidates for \(V(\emptyset ,A;A,B)\), depending on period-t allocations.

\(V^{41}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

A

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(B^{*}\)

B

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(V^{41}=\pi (A,B^{*};A,B)+\pi (A,B;A,B)+(1-2p)\delta V(\emptyset ,B;A,B)+p\delta V(\emptyset ,B;A)+p\delta V(\emptyset ,B;B)\). Note that \(V^{41}\) is the value of the specialization.

\(V^{42}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

A

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(A^{*}\)

A

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(V^{42}=\pi (A,A^{*};A,B)+\pi (A,A;A,B)+(1-2p)\delta V(\emptyset ,A;A,B)+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,A;B).\)

\(V^{43}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

A

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(A^{*}\)

\(B^{*}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

$$\begin{aligned} V^{43}= & {} \pi (A,A^{*};A,B)+\pi (A,B^{*};A,B)\\{} & {} \quad +(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A,B;A)+p\delta V(\emptyset ,A,B;B)\\= & {} \pi (A,A^{*};A,B)+\pi (A,B^{*};A,B)\\{} & {} \quad +(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B). \end{aligned}$$

Claim 5

\(V^{41}>V^{42}\) and \(V^{43}>V^{42}\).

Proof

First,

$$\begin{aligned} V^{41}-V^{42}= & {} \{\pi (A,B^{*};A,B)-\pi (A,A^{*};A,B)\}+\{\pi (A,B;A,B)-\pi (A,A;A,B)\}\\{} & {} +(1-2p)\delta \{V(\emptyset ,B;A,B)-V(\emptyset ,A;A,B)\}\\{} & {} +p\delta \{V(\emptyset ,B;A)-V(\emptyset ,A;B)\}+p\delta \{V(\emptyset ,B;B)-V(\emptyset ,A;A)\}. \end{aligned}$$

By calculation, \(\pi (A,B^{*};A,B)>\pi (A,A^{*};A,B)\) and \(\pi (A,B;A,B)>\pi (A,A;A,B)\). Moreover, by symmetry, \(V(\emptyset ,B;A,B)=V(\emptyset ,A;A,B)\), \(V(\emptyset ,B;A)=V(\emptyset ,A;B)\), and \(V(\emptyset ,B;B)=V(\emptyset ,A;A)\). Thus \(V^{41}>V^{42}\).

We next show \(V^{43}>V^{42}\).

$$\begin{aligned} V^{43}-V^{42}= & {} \pi (A,B^{*};A,B)-\pi (A,A;A,B)+p\delta \left( V(\emptyset ,B;B)-V(\emptyset ,A;B)\right) \\{} & {} +(1-2p)\delta \left( V(\emptyset ,A,B;A,B)-V(\emptyset ,A;A,B)\right) \\= & {} \pi (A,B^{*};A,B)-\pi (A,A;A,B)+p\delta \left( V(\emptyset ,B;B)-V(\emptyset ;B)\right) \\{} & {} +(1-2p)\delta \left( V(\emptyset ,A,B;AB)-V(\emptyset ,A;A,B)\right) >0. \end{aligned}$$

The last inequality follows from the fact that \(\pi (A,B^{*};A,B)-\pi (A,A;A,B)=(\lambda ^{1/2}-w-w^{*})+2w=\lambda ^{1/2}+w-w^{*}>0\), \(V(\emptyset ,B;B)\ge V(\emptyset ;B)\), and \(V(\emptyset ,A,B;A,B)\ge V(\emptyset ,A;A,B)\). Thus, \(V^{43}>V^{42}\). \(\square \)

At this stage, we cannot clearly say which is larger, \(V^{41}\) or \(V^{43}\).

1.1.5 B.1.5 Calculation of \(V(\emptyset ,A,B;A,B)\)

We have the following four candidates for \(V(\emptyset ,A,B;A,B)\), depending on period-t allocations.

  • Case 1: \((x_{t,1}^{t-1},x_{t,2}^{t-1})=(A,A)\). Then, the old worker is assigned job A though jobs A and B are assignable. Thus, the value candidate \(V^{51}\) in this case is equal to the value when only job A is assignable, i.e., \(V^{51}=V(\emptyset ,A;A,B)\).

  • Case 2: \((x_{t,1}^{t-1},x_{t,2}^{t-1})=(B,B)\). Then, similarly, the value candidate \(V^{52}\) in this case is \(V^{52}=V(\emptyset ,B;A,B)\).

  • Case 3: \((x_{t,1}^{t-1},x_{t,2}^{t-1})=(A,B)\). Denote the value candidate in this case by \(V^{53}\). Then, we have the following four subcandidates for \(V^{53}\), depending on the young worker’s assignment \((x_{t,1}^{t},x_{t,2}^{t})\).

    $$\begin{aligned} V^{531}= & {} \pi (A,B^{*};A,B)+\pi (B,A^{*};A,B)\\{} & {} \quad +(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A,B;A)+p\delta V(\emptyset ,A,B;B). \end{aligned}$$

    Note that \(V^{531}\) is the value of the rotation. \(V^{532}=\pi (A,A^{*};A,B)+\pi (B,B^{*};\) \(A,B)+(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A,B;A)+p\delta V(\emptyset ,A,B;B).\) \(V^{533}=\pi (A,A^{*};A,B)+\pi (B,A;A,B)+(1-2p)\delta V(\emptyset ,A;A,B)+p\delta V(\emptyset ,A;A)\) \(+p\delta V(\emptyset ,A;B)\). \(V^{534}=V^{533}\) by symmetry.

\(V^{531}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

B

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(B^{*}\)

\(A^{*}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(V^{532}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

B

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(A^{*}\)

\(B^{*}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A,B\}\)

\(V^{533}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

B

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(A^{*}\)

A

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,A\}\)

\(V^{534}\)

     
 

Alloc. at t

States at \(t+1\)

States at \(t+1\)

States at \(t+1\)

 

\(s=1\)

\(s=2\)

   

\(a^{t-1}\)

A

B

\(\omega _{t+1}^{A}=\{A,B\}\)

\(\omega _{t+1}^{A}=\{A\}\)

\(\omega _{t+1}^{A}=\{B\}\)

\(a^{t}\)

\(B^{*}\)

B

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

\(\omega _{t+1}^{O}=\{\emptyset ,B\}\)

Thus, \(V^{53}=\max \{V^{531},V^{532},V^{533},V^{534}\}\).

Claim 6

\(V^{531}>V^{532}.\)

Proof

This is because \(\pi (A,B^{*};A,B)>\pi (A,A^{*};A,B)\) and \(\pi (B,A^{*};A,B)>\pi (B,B^{*};A,B)\). \(\square \)

  • Case 4: \((x_{t,1}^{t-1},x_{t,2}^{t-1})=(B,A)\). Let \(V^{54}\) be the value in this case. Then, by symmetry, \(V^{54}=V^{53}.\)

1.2 B.2 Proof of Lemma 1: A necessary and almost sufficient condition for the rotation to be optimal

1.2.1 B.2.1 A necessary condition for the rotation to be optimal

Since our initial condition is \((\emptyset ,A,B;A,B)\), we focus on Section B.1.5 for \(V(\emptyset ,A,B;A,B)\). Suppose that the rotation is a profit-maximizing allocation. Then, the value is \(V(\emptyset ,A,B;A,B)=V^{531}\). In addition to the inequality of Claim 6, we have the following relations.

$$\begin{aligned} V^{531}\ge & {} V^{533}=V^{534},\end{aligned}$$
(8)
$$\begin{aligned} V^{531}\ge & {} V^{51}=V^{52}=V^{4}, \end{aligned}$$
(9)

where \(V^{4}:=V(\emptyset ,A;A,B)=\max \{V^{41},V^{42},V^{43}\}\). Let

$$\begin{aligned} M:=(1-2p)\delta \{V(\emptyset ,A,B;A,B)-V(\emptyset ,B;A,B)\}+p\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}. \end{aligned}$$

Then,

$$\begin{aligned} V^{43}-V^{41}= & {} M-(1-w+w^{*}),\end{aligned}$$
(10)
$$\begin{aligned} V^{531}-V^{533}= & {} M-\left( 1-2\lambda ^{\frac{1}{2}}+w^{*}-w\right) . \end{aligned}$$
(11)

Thus, we have

Claim 7

\(V^{43}>V^{41}\Rightarrow V^{531}>V^{533}\).

To know the implications from (8) and (9) using (10) and (11), we explore the value of M. Since \(V(\emptyset ,A,B;A,B)=V^{531}\) and \(V(\emptyset ,A;A,B)=V^{4}\), we have

$$\begin{aligned} M= & {} (1-2p)\delta (V^{531}-V^{4})+p\delta (V(\emptyset ,A;A)-V(\emptyset ;A)). \end{aligned}$$
(12)

In the above M, we have the three unknowns: The first unknown is \(V^{531}\). It follows from Section B.1.5 that \(V^{531}=\pi (A,B^{*};A,B)+\pi (B,A^{*};A,B)+(1-2p)\delta V^{531}+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B)\). Thus, solving this equation for \(V^{531}\), we have

$$\begin{aligned} V^{531}= & {} \frac{1}{1-(1-2p)\delta }\nonumber \\{} & {} \Big (\pi (A,B^{*};A,B)+\pi (B,A^{*};A,B)+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B)\Big ). \end{aligned}$$
(13)

The second unknown is

$$\begin{aligned} V(\emptyset ,A;A)-V(\emptyset ;A)= & {} V(\emptyset ,A;A)-\pi (\emptyset ,A^{*};A)-\pi (\emptyset ,A;A)-\delta V(\emptyset ,A;A)\quad (\because ((6)))\nonumber \\= & {} \pi (A,A^{*};A)+\pi (A,A;A)-\pi (\emptyset ,A^{*};A)-\pi (\emptyset ,A;A)\quad (\because ((7)))\nonumber \\= & {} (1+\lambda )^{\alpha }-w-w^{*}+2^{\alpha }-2w-(\lambda ^{\alpha }-w^{*})-(1-w)\nonumber \\= & {} (1+\lambda )^{\alpha }+2^{\alpha }-\lambda ^{\alpha }-1-2w. \end{aligned}$$
(14)

The third unknown is \(V^{4}\) for which we have two cases from (10): \(M<1+w^{*}-w\) and \(M\ge 1+w^{*}-w\).

Case 1: \(M<1+w^{*}-w\). Then, \(V^{43}-V^{41}=M-(1-w+w^{*})<0\) and thus, \(V^{43}<V^{41}\). Thus, since \(V^{41}>V^{42}\) and \(V^{43}>V^{42}\) by Claim 5 in Section B.1.4, we have \(V^{4}=V^{41}\). Now, it follows from Section B.1.4 that \(V^{4}=V^{41}=\pi (A,B^{*};A,B)+\pi (A,B;A,B)+(1-2p)\delta V(\emptyset ,B;A,B)+p\delta V(\emptyset ,B;A)+p\delta V(\emptyset ,B;B).\) Since \(V(\emptyset ,B;A,B)=V^{4}\) and \(V(\emptyset ,B;A)=V(\emptyset ;A)\), this becomes

$$\begin{aligned}{} & {} V^{4}=\pi (A,B^{*};A,B)+\pi (A,B;A,B)+(1-2p)\delta V^{4}+p\delta V(\emptyset ;A)+p\delta V(\emptyset ,B;B)\\{} & {} \Rightarrow V^{4} =\frac{1}{1-(1-2p)\delta }\left( \pi (A,B^{*};A,B)+\pi (A,B;A,B)+p\delta V(\emptyset ;A)+p\delta V(\emptyset ,B;B)\right) . \end{aligned}$$

Thus, we have obtained the three unknowns. Hence, \((V^{531}-V^{4})\) in M can be calculated as

$$\begin{aligned} V^{531}-V^{4}= & {} \frac{1}{1-(1-2p)\delta }\nonumber \\ {}{} & {} \quad \Big (\pi (B,A^{*};A,B)-\pi (A,B;A,B)+p\delta V(\emptyset ,A;A)-p\delta V(\emptyset ;A)\Big ). \end{aligned}$$
(15)

Thus, we can calculate the value of M as follows.

$$\begin{aligned} M= & {} \frac{(1-2p)\delta }{1-(1-2p)\delta }\Big \{\pi (B,A^{*};A,B)-\pi (A,B;A,B)+p\delta V(\emptyset ,A;A)-p\delta V(\emptyset ;A)\Big \}\\{} & {} +p\delta \left\{ V(\emptyset ,A;A)-V(\emptyset ;A)\right\} \\= & {} \frac{1}{1-(1-2p)\delta }\Big [(1-2p)\delta \left\{ \pi (B,A^{*};A,B)-\pi (A,B;A,B)\right\} +(1-2p)p\delta ^{2}\big \{ V(\emptyset ,A;A)\\{} & {} -V(\emptyset ;A))\big \}+\left\{ 1-(1-2p)\delta \right\} p\delta (V(\emptyset ,A;A)-V(\emptyset ;A))\Big ]\\= & {} \frac{1}{1-(1-2p)\delta }\Big [(1-2p)\delta \big \{\pi (B,A^{*};A,B)-\pi (A,B;A,B)\big \}+p\delta \big \{ V(\emptyset ,A;A)-V(\emptyset ;A)\big \}\Big ]\\= & {} \frac{1}{1-(1-2p)\delta }\Big [(1-2p)\delta \{\lambda ^{\frac{1}{2}}-w-w^{*}-(1-2w)\}+p\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}\Big ]\\= & {} \frac{-(1-2p)\delta (1-\lambda ^{\frac{1}{2}}+w^{*}-w)+p\delta (V(\emptyset ,A;A)-V(\emptyset ;A))}{1-(1-2p)\delta }. \end{aligned}$$

Therefore, we substitute this M into (11) to get the following implication from (8).

$$\begin{aligned}{} & {} \frac{-(1-2p)\delta (1-\lambda ^{\frac{1}{2}}+w^{*}-w)+p\delta (V(\emptyset ,A;A)-V(\emptyset ;A))}{1-(1-2p)\delta }\ge 1-2\lambda ^{\frac{1}{2}}+w^{*}-w\nonumber \\\Rightarrow & {} 1-\lambda ^{\frac{1}{2}}+w^{*}-w-\lambda ^{\frac{1}{2}}+(1-2p)\delta \lambda ^{\frac{1}{2}}\le p\delta (V(\emptyset ,A;A)-V(\emptyset ;A)). \end{aligned}$$
(16)

On the other hand, we use (15) to get the following implication from (9).

$$\begin{aligned} V^{531}-V^{41}= & {} \frac{1}{1-(1-2p)\delta }\big \{\pi (B,A^{*};A,B)-\pi (A,B;A,B)+p\delta V(\emptyset ,A;A)-p\delta V(\emptyset ;A)\big \}\ge 0.\nonumber \\\Rightarrow & {} \lambda ^{\frac{1}{2}}-w-w^{*}-(1-2w)+p\delta (V(\emptyset ,A;A)-V(\emptyset ;A))\ge 0\nonumber \\\Rightarrow & {} 1-\lambda ^{\frac{1}{2}}+w^{*}-w\le p\delta (V(\emptyset ,A;A)-V(\emptyset ;A)). \end{aligned}$$
(17)

Therefore, for Case 1, we have the two necessary conditions (16) and (17). In these equations, since \(-\lambda ^{\frac{1}{2}}+(1-2p)\delta \lambda ^{\frac{1}{2}}<0\), (17) implies (16). Hence, we have (17) as a necessary condition.

Case 2: \(1+w^{*}-w\le M\). Then, \(V^{43}-V^{41}=M-(1-w+w^{*})\ge 0\) and thus, \(V^{43}\ge V^{41}\). Thus, since \(V^{41}>V^{42}\) and \(V^{43}>V^{42}\) under Claim 5 in Section B.1.4, we have \(V^{4}=V^{43}\). Now, it follows from Section B.1.4 that

$$\begin{aligned} V^{4}= & {} V^{43}=\pi (A,A^{*};A,B)+\pi (A,B^{*};A,B)+(1-2p)\delta V^{531}+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B)\\= & {} 0-w-w^{*}+\lambda ^{\frac{1}{2}}-w-w^{*}+(1-2p)\delta V^{531}+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B). \end{aligned}$$

Then, (9) is automatically satisfied as follows.

$$\begin{aligned} V^{531}-V^{4}= & {} V^{531}-V^{43}\\= & {} \left( 1-(1-2p)\delta \right) V^{531}+2w+2w^{*}-\lambda ^{\frac{1}{2}}-p\delta V(\emptyset ,A;A)-p\delta V(\emptyset ,B;B)\\= & {} \pi (A,B^{*};A,B)+\pi (B,A^{*};A,B)+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B)\\{} & {} +2w+2w^{*}-\lambda ^{\frac{1}{2}}-p\delta V(\emptyset ,A;A)-p\delta V(\emptyset ,B;B)\quad (\text {by }((13)))\\= & {} \lambda ^{\frac{1}{2}}-w-w^{*}+\lambda ^{\frac{1}{2}}-w-w^{*}+2w+2w^{*}-\lambda ^{\frac{1}{2}}=\lambda ^{\frac{1}{2}}>0. \end{aligned}$$

Thus, we substitute this value \((V^{531}-V^{4})\) into (12) to get \(M=(1-2p)\delta \lambda ^{\frac{1}{2}}+p\delta (V(\emptyset ,A;A)-V(\emptyset ;A)).\) We substitute this M into (11) to get the following implication of (8).

$$\begin{aligned}{} & {} (1-2p)\delta \lambda ^{\frac{1}{2}}+p\delta (V(\emptyset ,A;A)-V(\emptyset ;A)\ge 1-2\lambda ^{\frac{1}{2}}+w^{*}-w\nonumber \\\Rightarrow & {} 1-2\lambda ^{\frac{1}{2}}+w^{*}-w-(1-2p)\delta \lambda ^{\frac{1}{2}}\le p\delta (V(\emptyset ,A;A)-V(\emptyset ;A)). \end{aligned}$$
(18)

Therefore, for Case 2, we have the necessary condition (18).

In sum, we have (17) for Case 1 or (18) for Case 2. Since (17) implies (18), we have (17) as a necessary condition for the rotation to be optimal. Hence, \(p\ge \frac{1-w+w^{*}-\lambda ^{\frac{1}{2}}}{\delta \{(1+\lambda )^{\alpha }+2^{\alpha }-\lambda ^{\alpha }-1-2w\}}\).

1.2.2 B.2.2 An almost sufficient condition for the rotation to be optimal

Suppose that

$$\begin{aligned} p\delta \left\{ V(\emptyset ,A;A)-V(\emptyset ;A)\right\} >1-w+w^{*}-\lambda ^{\frac{1}{2}}. \end{aligned}$$
(19)

The value of the rotation, \(\pi ^{R}\), is

$$\begin{aligned} \pi ^{R}= & {} V^{531} =\pi (A,B^{*};A,B)+\pi (B,A^{*};A,B)\\{} & {} \quad +(1-2p)\delta V(\emptyset ,A,B;A,B)+p\delta V(\emptyset ,A;A)+p\delta V(\emptyset ,B;B). \end{aligned}$$

We need to show

$$\begin{aligned}{} & {} V^{531}\ge V^{532}, \end{aligned}$$
(20)
$$\begin{aligned}{} & {} V^{531}\ge V^{533},\end{aligned}$$
(21)
$$\begin{aligned}{} & {} V^{531}\ge V^{51},\end{aligned}$$
(22)
$$\begin{aligned}{} & {} V^{531}\ge V^{52},\end{aligned}$$
(23)
$$\begin{aligned}{} & {} V^{531}\ge V^{54}=V^{53},\end{aligned}$$
(24)
$$\begin{aligned}{} & {} V^{531}\ge V^{41},\end{aligned}$$
(25)
$$\begin{aligned}{} & {} V^{531}\ge V^{42},\end{aligned}$$
(26)
$$\begin{aligned}{} & {} V^{531}\ge V^{43}. \end{aligned}$$
(27)

Here, the last three inequalities follow from the fact that \(V^{531}\ge V^{51}\) and \(V^{51}=V^{52}=V(\emptyset ,A;A,B)\equiv V^{4}=\max \{V^{41},V^{42},V^{43}\}\).

Claim 8

The three inequalities (21), (25), and (27) are sufficient for all of the above inequalities.

Proof

Suppose that (21), (25), and (27) hold. First of all, Claim 6 implies (20). Note that when (25) is true, by Claim 5 (\(V^{41}>V^{42}\)), (26) holds. Hence, it follows from (25), (26), and (27) that \(V^{531}\ge V^{4}\). This implies that (22) and (23) are true. On the other hand, since we have (20) and (21), we have \(V^{531}=V^{53}\) and thus (24). \(\square \)

From now on, we will check (21), (25), and (27).

  • Check whether \(V^{531}\ge V^{533}\), or (21).

$$\begin{aligned} V^{531}-V^{533}= & {} (1-2p)\delta \{V(\emptyset ,A,B;A,B)-V(\emptyset ,B;A,B)\}\\{} & {} +p\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}-(1-2\lambda ^{\frac{1}{2}}+w^{*}-w)\\> & {} (1-2p)\delta \{V(\emptyset ,A,B;A,B)-V(\emptyset ,B;A,B)\}\\{} & {} +1-w+w^{*}-\lambda ^{\frac{1}{2}}-(1-2\lambda ^{\frac{1}{2}}+w^{*}-w)\quad (\because ((19)))\\= & {} (1-2p)\delta \{V(\emptyset ,A,B;A,B)-V(\emptyset ,B;A,B)\}+\lambda ^{\frac{1}{2}}\\\ge & {} \lambda ^{\frac{1}{2}}\quad (\because V(\emptyset ,A,B;A,B)\ge V(\emptyset ,B;A,B))\\> & {} 0. \end{aligned}$$
  • Check whether \(V^{531}\ge V^{41}\), or (25).

    $$\begin{aligned} V^{531}-V^{41}= & {} \pi (B,A^{*};A,B)-\pi (A,B;A,B)\\{} & {} +(1-2p)\delta \{V(\emptyset ,A,B;A,B)-V(\emptyset ,B;A,B)\}+p\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}\\\ge & {} \pi (B,A^{*};A,B)-\pi (A,B;A,B)\\{} & {} +p\delta \{V(\emptyset ,A;A)-V(\emptyset ;A)\}\quad (\because V(\emptyset ,A,B;A,B)\ge V(\emptyset ,B;A,B))\\> & {} \pi (B,A^{*};A,B)-\pi (A,B;A,B)+1-w+w^{*}-\lambda ^{\frac{1}{2}}\quad (\because ((19)))\\= & {} \lambda ^{\frac{1}{2}}-w-w^{*}-(1-2w)+1-w+w^{*}-\lambda ^{\frac{1}{2}}=0. \end{aligned}$$
  • Check whether \(V^{531}\ge V^{43}\), or (27).

    $$\begin{aligned} V^{531}-V^{43}= & {} \pi (B,A^{*};A,B)-\pi (A,A^{*};A,B)\\ {}= & {} \lambda ^{\frac{1}{2}}-w-w^{*}-(0-w-w^{*})=\lambda ^{\frac{1}{2}}>0. \end{aligned}$$

1.3 B.3 Proof of Lemma 2

Suppose that the rotation is not optimal. Then, we will check the two cases: \(V^{533}>V^{531}\) and \(V^{533}\le V^{531}\).

Case 1: \(V^{533}>V^{531}\). Since \(V^{531}>V^{532}\) under Claim 6, we have \(V^{53}=V^{533}\).

Claim 9

\(V^{41}>V^{43}\) and thus \(V^{4}=V^{41}\).

Proof

Since \(V^{533}>V^{531}\) holds, we have

$$\begin{aligned} V^{533}-V^{531}= & {} \pi (A,A^{*};A,B)+\pi (B,A;A,B)-\pi (A,B^{*};A,B)-\pi (B,A^{*};A,B)\\{} & {} +(1-2p)\delta \{V(\emptyset ,A;A,B)-V(\emptyset ,A,B;A,B)\}+p\delta \{V(\emptyset ;B)-V(\emptyset ,B;B)\}>0. \end{aligned}$$

Thus,

$$\begin{aligned} V^{41}-V^{43}= & {} \pi (A,B^{*};A,B)+\pi (A,B;A,B)-\pi (A,A^{*};A,B)-\pi (A,B^{*};A,B)\\{} & {} +(1-2p)\{\delta V(\emptyset ,B;A,B)-V(\emptyset ,A,B;A,B)\}+p\delta V\{(\emptyset ;A)-V(\emptyset ,A;A)\}\\> & {} \pi (A,B^{*};A,B)+\pi (A,B;A,B)-\pi (A,A^{*};A,B)-\pi (A,B^{*};A,B)\\{} & {} -\pi (A,A^{*};A,B)-\pi (B,A;A,B)+\pi (A,B^{*};A,B)+\pi (B,A^{*};A,B)\\{} & {} (\because \text {by the inequality derived from }V^{533}>V^{531}\text { in the above})\\= & {} 2\pi (A,B^{*};A,B)-2\pi (A,A^{*};A,B)=2(\lambda ^{\frac{1}{2}}-w-w^{*})-2(0-w-w^{*})=2\lambda ^{\frac{1}{2}}>0. \end{aligned}$$

Thus, \(V^{41}>V^{43}\). Moreover, since \(V^{41}>V^{42}\) under Claim 5, we have \(V^{4}=V^{41}\). \(\square \)

Claim 10

\(V^{51}>V^{533}=V^{53}\) and thus \(V^{5}=V^{51}\).

Proof

We have

$$\begin{aligned} V^{51}-V^{533}= & {} V^{4}-V^{533}\\= & {} V^{41}-V^{533}\quad (\because \text { Claim}9)\\= & {} \pi (A,B^{*};A,B)+\pi (A,B;A,B)-\pi (A,A^{*};A,B)-\pi (B,A;A,B)\\{} & {} +(1-2p)\delta \{V(\emptyset ,B;A,B)-V(\emptyset ,A;A,B)\}\\{} & {} +p\delta \{V(\emptyset ,B;A)+V(\emptyset ,B;B)-V(\emptyset ,A;A)-V(\emptyset ,A;B)\}\\= & {} \pi (A,B^{*};A,B)-\pi (A,A^{*};A,B)=\lambda ^{\frac{1}{2}}-w-w^{*}-(0-w-w^{*})=\lambda ^{\frac{1}{2}}>0. \end{aligned}$$

Thus, \(V^{51}>V^{533}\). Then, since we know \(V^{533}=V^{53}\) and \(V^{51}=V^{52}\), we have \(V^{5}=V^{51}\). \(\square \)

Note that we have \(V^{51}=V^{4}\), \(V^{5}=V^{51}\) (\(\because \) Claim 10), and \(V^{4}=V^{41}\) (\(\because \) Claim 9). Thus, \(V^{5}=V^{41}\), which is the specialization value. This means that the specialization is optimal.

Case 2: \(V^{533}\le V^{531}\). Then, since \(V^{531}>V^{532}\) under Claim 6, we have \(V^{53}=V^{531}\), which is the rotation value.

Claim 11

\(V^{51}=V^{4}>V^{531}\).

Proof

By definition, \(V^{51}=V^{4}\). Suppose to the contrary that \(V^{51}=V^{4}\le V^{531}\). Then, \(V^{531}\ge V^{4}=V^{51}=V^{52}\), which means that the rotation is optimal. However, this contradicts the initial argument that the rotation is not optimal. \(\square \)

Claim 12

\(V^{41}\ge V^{43}\) and thus \(V^{4}=V^{41}\).

Proof

Suppose to the contrary that \(V^{41}<V^{43}\). Then, since \(V^{42}<V^{41}\) (\(\because \) Claim 5), we have \(V^{4}=V^{43}\). Thus, by Claim 11, \(V^{43}>V^{531}\). However, this inequality contradicts the following.

$$\begin{aligned} V^{43}-V^{531}= & {} \pi (A,A^{*};A,B)+\pi (A,B^{*};A,B)-\pi (A,B^{*};A,B)-\pi (B,A^{*};A,B)\\{} & {} +(1-2p)\delta \{V(\emptyset ,A,B;A,B)-V(\emptyset ,A,B;A,B)\}\\{} & {} +p\delta \{V(\emptyset ,A;A)+V(\emptyset ,B;B)-V(\emptyset ,A;A)-V(\emptyset ,B;B)\}\\= & {} \pi (A,A^{*};A,B)-\pi (B,A^{*};A,B)=-w-w^{*}-(\lambda ^{\frac{1}{2}}-w-w^{*})=-\lambda ^{\frac{1}{2}}<0. \end{aligned}$$

Hence, we have \(V^{41}\ge V^{43}\). Moreover, as \(V^{41}>V^{42}\) (\(\because \) Claim 5), we have \(V^{4}=V^{41}\). \(\square \)

Under claims 11 and 12, we have \(V^{51}=V^{4}=V^{41}>V^{531}=V^{53}\). This means that the specialization is optimal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurino, M., Kurokawa, Y. Job rotation or specialization? A dynamic matching model analysis. Rev Econ Design (2023). https://doi.org/10.1007/s10058-023-00345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10058-023-00345-7

Keywords

JEL Classification

Navigation