Abstract

Background: Binding appropriate cellular receptors is a crucial step of a lifecycle for any virus. Structure of receptor-binding domain for a viral surface protein has to be determined before the start of future drug design projects.

Objectives: Investigation of pH-induced changes in the secondary structure for a capsid peptide with loss of function mutation can shed some light on the mechanism of entrance.

Methods: Spectroscopic methods were accompanied by electrophoresis, ultrafiltration, and computational biochemistry.

Results: In this study, we showed that a peptide from the receptor-binding domain of Parvovirus B19 VP1 capsid (residues 13-31) is beta-structural at pH=7.4 in 0.01 M phosphate buffer, but alpha- helical at pH=5.0, according to the circular dichroism (CD) spectroscopy results. Results of infra- red (IR) spectroscopy showed that the same peptide exists in both alpha-helical and beta-structural conformations in partial dehydration conditions both at pH=7.4 and pH=5.0. In contrast, the peptide with Y20W mutation, which is known to block the internalization of the virus, forms mostly alpha-helical conformation in partial dehydration conditions at pH=7.4. According to our hypothesis, an intermolecular antiparallel beta structure formed by the wild-type peptide in its tetramers at pH=7.4 is the prototype of the similar intermolecular antiparallel beta structure formed by the corresponding part of Parvovirus B19 receptor-binding domain with its cellular receptor (AXL).

Conclusion: Loss of function Y20W substitution in VP1 capsid protein prevents the shift into the beta-structural state by the way of alpha helix stabilization and the decrease of its ability to turn into the disordered state.

Keywords: Parvovirus B19, sheet to helix transition, capsid protein, synthetic peptide, receptor-binding domain, pH-induced structural shift, circular dichroism.

Graphical Abstract
[1]
Liu, Z.; Qiu, J.; Cheng, F.; Chu, Y.; Yoto, Y.; O’Sullivan, M.G.; Brown, K.E.; Pintel, D.J. Comparison of the transcription profile of simian parvovirus with that of the human erythrovirus B19 reveals a number of unique features. J. Virol., 2004, 78(23), 12929-12939.
[http://dx.doi.org/10.1128/JVI.78.23.12929-12939.2004] [PMID: 15542645]
[2]
Ros, C.; Gerber, M.; Kempf, C. Conformational changes in the VP1-unique region of native human parvovirus B19 lead to exposure of internal sequences that play a role in virus neutralization and infectivity. J. Virol., 2006, 80(24), 12017-12024.
[http://dx.doi.org/10.1128/JVI.01435-06] [PMID: 17020940]
[3]
Anderson, S.; Momoeda, M.; Kawase, M.; Kajigaya, S.; Young, N.S. Peptides derived from the unique region of B19 parvovirus minor capsid protein elicitneutralizing antibodies in rabbits. Virology, 1995, 206(1), 626-632.
[http://dx.doi.org/10.1016/S0042-6822(95)80079-4] [PMID: 7530397]
[4]
Bieri, J.; Leisi, R.; Bircher, C.; Ros, C. Human parvovirus B19 interacts with globoside under acidic conditions as an essential step in endocytic trafficking. PLoS Pathog., 2021, 17(4), e1009434.
[http://dx.doi.org/10.1371/journal.ppat.1009434] [PMID: 33878123]
[5]
Bieri, J.; Ros, C. Globoside is dispensable for Parvovirus B19 entry but essential at a postentry step for productive infection. J. Virol., 2019, 93(20), e00972-19.
[http://dx.doi.org/10.1128/JVI.00972-19] [PMID: 31341051]
[6]
Ning, K.; Zou, W.; Xu, P.; Cheng, F.; Zhang, E.Y.; Zhang-Chen, A.; Kleiboeker, S.; Qiu, J. Identification of AXL as a co-receptor for human parvovirus B19 infection of human erythroid progenitors. Sci. Adv., 2023, 9(2), eade0869.
[http://dx.doi.org/10.1126/sciadv.ade0869] [PMID: 36630517]
[7]
Sasaki, T.; Knyazev, P.G.; Clout, N.J.; Cheburkin, Y.; Göhring, W.; Ullrich, A.; Timpl, R.; Hohenester, E. Structural basis for Gas6–Axl signalling. EMBO J., 2006, 25(1), 80-87.
[http://dx.doi.org/10.1038/sj.emboj.7600912] [PMID: 16362042]
[8]
Bönsch, C.; Zuercher, C.; Lieby, P.; Kempf, C.; Ros, C. The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J. Virol., 2010, 84(22), 11737-11746.
[http://dx.doi.org/10.1128/JVI.01143-10] [PMID: 20826697]
[9]
Sadat, A.; Joye, I.J. Peak fitting applied to Fourier transform infrared and Raman spectroscopic analysis of proteins. Appl. Sci., 2020, 10(17), 5918.
[http://dx.doi.org/10.3390/app10175918]
[10]
Micsonai, A.; Moussong, É.; Wien, F.; Boros, E.; Vadászi, H.; Murvai, N.; Lee, Y.H.; Molnár, T.; Réfrégiers, M.; Goto, Y.; Tantos, Á.; Kardos, J. BeStSel: Webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res., 2022, 50(W1), W90-W98.
[http://dx.doi.org/10.1093/nar/gkac345] [PMID: 35544232]
[11]
Lakshmanan, R.V.; Hull, J.A.; Berry, L.; Burg, M.; Bothner, B.; McKenna, R.; Agbandje-McKenna, M. Structural dynamics and activity of B19V VP1u during the pHs of cell entry and endosomal trafficking. Viruses, 2022, 14(9), 1922.
[http://dx.doi.org/10.3390/v14091922] [PMID: 36146728]
[12]
Leisi, R.; Di Tommaso, C.; Kempf, C.; Ros, C. The receptor-binding domain in the VP1u region of Parvovirus B19. Viruses, 2016, 8(3), 61.
[http://dx.doi.org/10.3390/v8030061] [PMID: 26927158]
[13]
Kariolis, M.S.; Miao, Y.R.; Jones, D.S., II; Kapur, S.; Mathews, I.I.; Giaccia, A.J.; Cochran, J.R. An engineered Axl ‘decoy receptor’ effectively silences the Gas6-Axl signaling axis. Nat. Chem. Biol., 2014, 10(11), 977-983.
[http://dx.doi.org/10.1038/nchembio.1636] [PMID: 25242553]
[14]
Anthis, N.J.; Clore, G.M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci., 2013, 22(6), 851-858.
[http://dx.doi.org/10.1002/pro.2253] [PMID: 23526461]
[15]
Wittig, I.; Braun, H.P.; Schägger, H. Blue native PAGE. Nat. Protoc., 2006, 1(1), 418-428.
[http://dx.doi.org/10.1038/nprot.2006.62] [PMID: 17406264]
[16]
Akunevich, A.A.; Khrustalev, V.V.; Khrustaleva, T.A.; Poboinev, V.V.; Shalygo, N.V.; Stojarov, A.N.; Arutyunyan, A.M.; Kordyukova, L.V.; Sapon, Y.G. Equilibrium between dimeric and monomeric forms of human epidermal growth factor is shifted towards dimers in a solution. Protein J., 2022, 41(2), 245-259.
[http://dx.doi.org/10.1007/s10930-022-10051-y] [PMID: 35348971]
[17]
Hirota, S.; Hattori, Y.; Nagao, S.; Taketa, M.; Komori, H.; Kamikubo, H.; Wang, Z.; Takahashi, I.; Negi, S.; Sugiura, Y.; Kataoka, M.; Higuchi, Y. Cytochrome c polymerization by successive domain swapping at the C-terminal helix. Proc. Natl. Acad. Sci., 2010, 107(29), 12854-12859.
[http://dx.doi.org/10.1073/pnas.1001839107] [PMID: 20615990]
[18]
Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theory Comput., 2014, 10(10), 4745-4758.
[http://dx.doi.org/10.1021/ct500592m] [PMID: 26588162]
[19]
Ghoorah, A.W.; Devignes, M.D.; Smaïl-Tabbone, M.; Ritchie, D.W. Protein docking using case-based reasoning. Proteins, 2013, 81(12), 2150-2158.
[http://dx.doi.org/10.1002/prot.24433] [PMID: 24123156]
[20]
Timmons, P.B.; Hewage, C.M. APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures. Brief. Bioinform., 2021, 22(6), bbab308.
[http://dx.doi.org/10.1093/bib/bbab308] [PMID: 34396417]
[21]
Deng, H.; Jia, Y.; Zhang, Y. 3DRobot: automated generation of diverse and well-packed protein structure decoys. Bioinformatics, 2016, 32(3), 378-387.
[http://dx.doi.org/10.1093/bioinformatics/btv601] [PMID: 26471454]
[22]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[23]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[24]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[25]
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[26]
Poboinev, V.V.; Khrustalev, V.V.; Khrustaleva, T.A.; Kasko, T.E.; Popkov, V.D. The PentUnFOLD algorithm as a tool to distinguish the dark and the light sides of the structural instability of proteins. Amino Acids, 2022, 54(8), 1155-1171.
[http://dx.doi.org/10.1007/s00726-022-03153-5] [PMID: 35294674]
[27]
Khrustalev, V.V.; Kasko, T.E.; Poboinev, V.V.; Khrustaleva, T.A. USSA – secondary structure assignment method for proteins. Insect Biochem. Mol. Biol., 2022, 1(1), 8-15.
[28]
Páll, S.; Zhmurov, A.; Bauer, P.; Abraham, M.; Lundborg, M.; Gray, A.; Hess, B.; Lindahl, E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys., 2020, 153(13), 134110.
[http://dx.doi.org/10.1063/5.0018516] [PMID: 33032406]
[29]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[30]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[31]
Bakshi, K.; Liyanage, M.R.; Volkin, D.B.; Middaugh, C.R. Circular dichroism of peptides. Methods Mol. Biol., 2014, 1088, 247-253.
[http://dx.doi.org/10.1007/978-1-62703-673-3_17] [PMID: 24146409]
[32]
Mortuza, S.M.; Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Zhang, Y. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Nat. Commun., 2021, 12(1), 5011.
[http://dx.doi.org/10.1038/s41467-021-25316-w] [PMID: 34408149]
[33]
Vladislav, V.K.; Tatyana, A.K.; Victor, V.P.; Nicolaevich, A.S.; Valentinovna, L.K.; Aleksandrovna, A.A. Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 257, 119784.
[http://dx.doi.org/10.1016/j.saa.2021.119784] [PMID: 33892250]
[34]
Leisi, R.; Ruprecht, N.; Kempf, C.; Ros, C. Parvovirus B19 uptake is a highly selective process controlled by VP1u, a novel determinant of viral tropism. J. Virol., 2013, 87(24), 13161-13167.
[http://dx.doi.org/10.1128/JVI.02548-13] [PMID: 24067971]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy