Skip to main content
Log in

Annual growth of Fagus orientalis is limited by spring drought conditions in Iran’s Golestan Province

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Due to the lack of a uniform and accurate definition of ‘drought’, several indicators have been introduced based on different variables and methods, and the efficiency of each of these is determined according to their relationship with drought. The relationship between two drought indices, SPI (standardized precipitation index) and SPEI (standardized precipitation-evapotranspiration index) in different seasons was investigated using annual rings of 15 tree samples to determine the effect of drought on the growth of oriental beech (Fagus orientalis Lipsky) in the Hyrcanian forests of northern Iran. The different evapotranspiration calculation methods were evaluated on SPEI efficiency based on Hargreaves-Samani, Thornthwaite, and Penman–Monteith methods using the step-by-step M5 decision tree regression method. The results show that SPEI based on the Penman–Monteith in a three-month time scale (spring) had similar temporal changes and a better relationship with annual tree rings (R2 = 0.81) at a 0.05 significant level. Abrupt change and a decreasing trend in the time series of annual tree rings are similar to the variation in the SPEI based on the Penman–Monteith method. Factors affecting evapotranspiration, temperature, wind speed, and sunshine hours (used in the Penman–Monteith method), increased but precipitation decreased. Using non-linear modeling methods, SPEI based on Penman–Monteith best illustrated climate changes affecting tree growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover Publications, New York, p 1046

    Google Scholar 

  • Aiken LS, West SG, Pitts SC (2003) Multiple linear regression. Handbook Psychol 15:481–507

    Article  Google Scholar 

  • Aiken LS, West SG, Reno RR (1991) Multiple regression: testing and interpreting interactions. Sage, New York

    Google Scholar 

  • Amir Chakhmaghi N, Sohrabi H, Darani N (2010) Evaluation of Quercus persica tree rings for dendroclimatology. In: The First Iranian Conference on Natural Resources Research, Snanadaj, Iran

  • Arsalani M, Azizi G, Khoshakhlagh F (2012) Reconstruction of maximum temperature variations in Kermanshah province using tree rings. J Geogr Environ Hazards 1(1):97–110. https://doi.org/10.22067/geo.v1i1.16542.(inPersian)

    Article  Google Scholar 

  • Balapour S, Jalilvand H, Raeini M, Asadpour H (2010) Relationship between tree rings of beech (F. orientalis) with some climatic variables in experimental forest of natural resources faculty (Darabkola). J Watershed Manag Res 23(3):1–10

    Google Scholar 

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  • Bhuyan U, Zang C, Menzel A (2017) Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44:1–8

    Article  Google Scholar 

  • Biondi F, Qeadan F (2008) A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res 64(2):81–96

    Article  Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124

    Article  Google Scholar 

  • Buras A (2017) A comment on the expressed population signal. Dendrochronologia 44:130–132

    Article  Google Scholar 

  • Cabral-Alemán C, Villanueva-Díaz J, Quiñonez-Barraza G, Gómez-Guerrero A, Arreola-Ávila JG (2022) Reconstruction of the standardized precipitation-evapotranspiration index for the western region of Durango State. Mexico for 13(8):1233

    Google Scholar 

  • Castaldi C, Marchi M, Vacchiano G, Corona P (2020) Douglas-fir climate sensitivity at two contrasting sites along the southern limit of the European planting range. J for Res 31(6):2193–2204. https://doi.org/10.1007/s11676-019-01041-5

    Article  Google Scholar 

  • Chen F, Yuan YJ, Wei WS (2011) Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains. China J Arid Environ 75(11):1121–1128. https://doi.org/10.1016/j.jaridenv.2011.06.010

    Article  Google Scholar 

  • Cook E, Briffa K, Shiyatov S, Mazepa V, Jones PD (1990) Data analysis. In: Methods of dendrochronology: applications in the environmental sciences (pp. 97–162). Dordrecht: Springer Netherlands

    Chapter  Google Scholar 

  • Conrad V, Pollak C (1950) Methods in climatology. Harvard University Press, Cambridge, p 459

    Book  Google Scholar 

  • Dhyani R, Bhattacharyya A, Rawal RS, Joshi R, Shekhar M, Ranhotra PS (2022) Is tree ring chronology of blue pine (Pinus wallichiana AB Jackson) prospective for summer drought reconstruction in the Western Himalaya? J Asian Earth Sci 229:105142. https://doi.org/10.1016/j.jseaes.2022.105142

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. Food and Agriculture Organisation of the United Nations, FAO Irrigation and Drainage Paper 24, Rome, p 143

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (F. sylvatica L.) in southern Sweden. For Ecol Manage 259(11):2160–2171

    Article  Google Scholar 

  • Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss Centralbl 88:230–250

    Article  Google Scholar 

  • Frelich LE, Montgomery RA, Oleksyn J (2015) Northern temperate forests. In: Corlett RT, Bergeron Y (eds) Peh KSH. Routledge, London

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press Inc., London, UK

    Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105(3–4):121–139

    Article  Google Scholar 

  • Gauli A, Neupane PR, Mundhenk P, Köhl M (2022) Effect of climate change on the growth of tree species: dendroclimatological analysis. Forests 13(4):496

    Article  Google Scholar 

  • Ghorbani K, Salarijazi M, Ghahreman N (2022) Developing stepwise m5 tree model to determine the influential factors on rainfall prediction and to overcome the greedy problem of its algorithm. Water Resour Manag 36:3327–3348. https://doi.org/10.1007/s11269-022-03203-3

    Article  Google Scholar 

  • Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agric Water Manag 69(1):1–11

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35:311–322

    Article  Google Scholar 

  • Hadad MA, Flores D, Gallardo V, Roig FA, González-Reyes Á, Chen F (2022) Dendroclimatic potential of the Adesmia pinifolia shrub growing at high altitude in the Andes foothills. Dendrochronologia 72:125919

    Article  Google Scholar 

  • Haghshenas M, Mohadjer MRM, Attarod P, Pourtahmasi K, Feldhaus J, Sadeghi SMM (2016) Climate effect on tree-ring widths of F. orientalis in the Caspian forests northern Iran. Forest Sci Technol 112(4):176–182

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change Cambridge University Press, Cambridge, pp 1−18

  • Jalilvand H (2008) Tree-ring growth response of common ash (Fraxinus excelsior L.) to climatic variables using multiple regressions. JWSS 11(42):597–609

    Google Scholar 

  • Jiao L, Wang SJ, Chen K, Liu XP (2022) Dynamic response to climate change in the radial growth of Picea schrenkiana in western Tien Shan. China J for Res 33(1):147–157

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kramer K (1994) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31(1):172–181

    Article  Google Scholar 

  • Lapointe-Garant MP, Huang JG, Gea-Izquierdo G, Raulier F, Bernier P, Berninger F (2010) Use of tree rings to study the effect of climate change on trembling aspen in Québec. Glob Chang Biol 16(7):2039–2051

    Article  Google Scholar 

  • Levanič T, Popa I, Poljanšek S, Nechita C (2013) A 323-year long reconstruction of drought for SW Romania based on black pine (Pinus nigra) tree-ring widths. Int J Biometeorol 57(5):703–714

    Article  PubMed  Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Article  Google Scholar 

  • Ma ZM, Kang SZ, Zhang L, Tong L, Su XL (2008) Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J Hydrol 352(3–4):239–249

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proc 8th Conf Appl Climatol 17(22):179–183

    Google Scholar 

  • Mohammadi J, Shataee S, Namiranian M, Næsset E (2017) Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultraCam-D images. Int J Appl Earth Obs Geoinf 61:32–45

    Google Scholar 

  • Nikray S (2017) Dendroclimatological study on Zelkova carpinifolia in Dland national park in Gorgan province. J Wood for Sci Technol 24(1):161–174

    Google Scholar 

  • Oladi R, Pourtahmasi K (2012) Intra-annual secondary growth rate-climate relations of Fagus orientalis Lipsky in the center of Hyrcanian forests. Not Sci Biol 4(2):136–140

    Article  Google Scholar 

  • Oladi R, Pourtahmasi K, Eckstein D, Bräuning A (2011) Seasonal dynamics of wood formation in Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest. Iran Trees 25(3):425–433

    Article  Google Scholar 

  • Pasho E, Alla AQ (2022) Impact of climate and management on radial growth dynamics of two coexisting Mediterranean Quercus species in south Albania. Southern for: J Sci 84(1):21–33

    Google Scholar 

  • Pasho E, Toromani E, Alla AQ (2014) Climatic impact on tree-ring widths in Abies borisii-regis forests from South-East Albania. Dendrochronologia 32(3):237–244

    Article  Google Scholar 

  • Pederson N, Dyer JM, McEwan RW, Hessl AE, Mock CJ, Orwig DA, Rieder HE, Cook BI (2014) The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecol Monogr 84(4):599–620

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Pluess AR, Weber P (2012) Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology. PLoS ONE 7(3):33636

    Article  Google Scholar 

  • Pohlert T (2016) Non-parametric trend tests and change-point detection. CC BY-ND 4:1–18

    Google Scholar 

  • Pourtahmasi K, Lotfiomran N, Bräuning A, Parsapajouh D (2011) Tree-ring width and vessel characteristics of oriental beech (F. orientalis) along an altitudinal gradient in the Caspian forests, northern Iran. IAWA J 32(4):461–473

    Article  Google Scholar 

  • Qiao J, Sun Y, Pan L, Luo M, Ding Z, Sun Z (2022) Variability in the climate-radial growth correlation of Pinus massoniana of different diameter classes. J Forestry Res 33(6):1781–1792

    Article  CAS  Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. In: Proceedings of Australian joint conference on artificial intelligence pp 343–348.

  • Quinlan JR (1993) C45: programs for machine learning. Morgan Kaufmann Publishers Inc, San Francisco, p 302

    Google Scholar 

  • R Development Core Team (2016) R: a language and environment for statistical computing; R foundation for statistical computing, Vienna, Austria

  • Rahimi J, Malekian A, Khalili A (2019) Climate change impacts in Iran: assessing our current knowledge. Theor Appl Climatol 135:545–564. https://doi.org/10.1007/s00704-018-2395-7

    Article  Google Scholar 

  • Rahman M, Islam M, Wernicke J, Bräuning A (2018) Changes in sensitivity of tree-ring widths to climate in a tropical moist forest tree in Bangladesh. Forests 9(12):761

    Article  Google Scholar 

  • Redmond KT (2002) The depiction of drought. Bull Amer Meteor Soc 83:1143–1147

    Article  Google Scholar 

  • Sattari MT, Farkhondeh A, Abraham JP (2018) Estimation of sodium adsorption ratio indicator using data mining methods: a case study in Urmia Lake basin. Iran Environ Sci Pollut Res Int 25(5):4776–4786

    Article  CAS  PubMed  Google Scholar 

  • Schweingruber FH (1988) Tree rings: basics and applications of dendrochronology. Kluwer Academic Publishers, Dordrecht, Netherlands, p 276

    Book  Google Scholar 

  • Selim Gülü Y (2020) Improved visualization for trend analysis by comparing with classical Mann–Kendall test and ITA. J Hydrol 584:124674. https://doi.org/10.1016/j.jhydrol.2020.124674

    Article  Google Scholar 

  • Shamshirband Sh, Hashemi S, Salimi H, Samadianfard S, Asadi E, Shadkani S, Kargar K, Mosavi A, Nabipour N, Chau KW (2020) Predicting Standardized Streamflow index for hydrological drought using machine learning models. Eng Appl Comput Fluid Mech 14(1):339–350. https://doi.org/10.1080/19942060.2020.1715844

    Article  Google Scholar 

  • Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K (2015) Candidate distributions for climatological drought indices (SPI and SPEI). Int J Climatol 35(13):4027–4040

    Article  Google Scholar 

  • Stern RL, Schaberg PG, Rayback SA, Hansen CF, Murakami PF, Hawley GJ (2023) Growth trends and environmental drivers of major tree species of the northern hardwood forest of eastern North America. J for Res 34(1):37–50. https://doi.org/10.1007/s11676-022-01553-7

    Article  Google Scholar 

  • Tejedor E, de Luis M, Cuadrat JM, Esper J, Saz MÁ (2016) Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694. Int J Biometeorol 60(3):361–372

    Article  PubMed  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Touchan R, Funkhouser G, Hughes MK, Erkan N (2005) Standardized precipitation index reconstructed from Turkish tree-ring widths. Clim Change 72(3):339–353

    Article  Google Scholar 

  • Touchan R, Hughes MK (1999) Dendrochronology in Jordan. J Arid Environ 42:291–303

    Article  Google Scholar 

  • Vakhnina IL, Myglan VS, Noskova EV, Barinov VV, Tainik AV (2022) Regional features of the radial growth of scots pine under climatic conditions of the forest-steppe and steppe zones of Eastern Transbaikalia according to multiparameter tree-ring chronologies. Contemp Probl Ecol 15(2):118–128

    Article  Google Scholar 

  • Van der Maaten E (2012) Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26(3):777–788

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM, Camarero JJ, Zabalza J, Sangüesa-Barreda G, López-Moreno JI, Tague CL (2015) Evapotranspiration deficit controls net primary production and growth of silver fir: Implications for Circum-Mediterranean forests under forecasted warmer and drier conditions. Agric for Meteorol 206:45–54

    Article  Google Scholar 

  • Wang YC, Witten IH (1997) Inducing model trees for continuous classes. In: Proceedings of the 9th European conference on machine learning, pp 128−137.

  • Wang YC, Zhang HF, Wang H, Guo JL, Zhang EL, Wang J, Li X, Wei HL, Zhou CL (2022) Tree-ring-based drought reconstruction in northern North China over the past century. Atmosphere 13(3):482. https://doi.org/10.3390/atmos13030482

    Article  Google Scholar 

  • WMO (2012) Standardized Precipitation Index User Guide, 24. World Bank: World Bank data, agriculture, forestry, and fishing, value added (% of GDP). Accessed 25 Oct 2018, 2017. Data, https://data.worldbank.org/indicator/nv.agr.totl.zs

  • Yadav RR, Misra KG, Yadava AK, Kotlia BS, Misra S (2015) Tree-ring footprints of drought variability in last∼ 300 years over Kumaun Himalaya, India and its relationship with crop productivity. Quat Sci Rev 117:113–123

    Article  Google Scholar 

  • Yin YH, Wu SH, Chen G, Dai EF (2010) Attribution analyses of potential evapotranspiration changes in China since the 1960s. Theor Appl Climatol 101(1):19–28

    Article  Google Scholar 

  • Yin ZL, Feng Q, Wen XH, Deo RC, Yang LS, Si JH, He ZB (2018) Design and evaluation of SVR, MARS and M5Tree models for 1-, 2- and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment. Stoch Environ Res Risk Assess 32(9):2457–2476

    Article  Google Scholar 

  • Yue S, Pilon P (2004) A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann–Kendall et du bootstrap pour la détection de tendance. Hydrol Sci J 49(1):21–37

    Article  Google Scholar 

Download references

Acknowledgements

This research has been conducted at the Gorgan University of Agricultural Sciences and Natural Resources and supported by the Iranian National Science Foundation (INSF) (grant no. 96012844). The authors are grateful to the INSF for the financial support for this research.

Funding

This work was supported by Iran National Science Foundation (INSF) (grant no. 96012844).

Author information

Authors and Affiliations

Authors

Contributions

Khalil Ghorbani and Jahangir Mohammadi designed and conceptualized the study; Khalil Ghorbani and Jahangir Mohammadi collected the data and performed the analysis; all authors contributed in writing and commenting on the draft. Laleh Rezaei Ghaleh edited the final manuscript and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Khalil Ghorbani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding:This work was supported by Iran National Science Foundation (INSF) (grant no. 96012844).

The online version is available at https://link.springer.com/

Corresponding editor: Yu Lei

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, K., Mohammadi, J. & Rezaei Ghaleh, L. Annual growth of Fagus orientalis is limited by spring drought conditions in Iran’s Golestan Province. J. For. Res. 35, 19 (2024). https://doi.org/10.1007/s11676-023-01674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11676-023-01674-7

Keywords

Navigation