Skip to main content
Log in

Highly sensitive QEPAS sensor for sub-ppb N2O detection using a compact butterfly-packaged quantum cascade laser

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a mid-infrared quartz-enhanced photoacoustic sensor for highly sensitive nitrous oxide (N2O) detection using a 4.56 µm quantum cascade laser (QCL) with a butterfly package type. This new type of QCL features a compact size (30 mm × 12.7 mm × 13 mm), low threshold current (< 120 mA) at room temperature, and relatively high emission power (> 100 mW), which are suitable for portable trace gas sensor development. In this work, the QCL beam is directly coupled to the QEPAS detection module by using only one focusing lens. By measuring N2O mixtures with different concentrations (120 ppb to 3.16 ppm), the developed sensor shows a good linearity (R-square value of 0.999) and a minimum detection limit of below 1 ppb. The sensor has been successfully deployed for ambient air measurement, demonstrating the applicability and promising potential of using this QCL with butterfly package for various gas sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are publicly available.

References

  1. World Meteorological Organization, WMO greenhouse gas bulletin: The state of greenhouse gases in the atmosphere based on global observations through 2019, (2020).

  2. A.R. Ravishankara, J.S. Daniel, R.W. Portmann, Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009)

    Article  ADS  Google Scholar 

  3. S.A. Montzka, E.J. Dlugokencky, J.H. Butler, Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011)

    Article  Google Scholar 

  4. R.K. Pachauri, L. Meyer, Climate change 2014 synthesis report. Environ. Policy Collect 27(2), 408 (2014)

    Google Scholar 

  5. D.J. Wuebbles, Nitrous oxide: No laughing matter. Science 326(5949), 56–57 (2009)

    Article  ADS  Google Scholar 

  6. C.A. Horowitz, Paris agreement. Int. Leg. Mater. 55(4), 740–755 (2016)

    Article  Google Scholar 

  7. R.L. Thompson, L. Lassaletta, P.K. Patra, C. Wilson, K.C. Wells, A. Gressent, E.N. Koffi, M.P. Chipperfield, W. Winiwarter, E.A. Davidson, H. Tian, J.G. Canadell, Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Chang. 9(12), 993–998 (2019)

    Article  ADS  Google Scholar 

  8. C.D. Dorich, R.T. Conant, F. Albanito, K. Butterbach-Bahl, P. Grace, C. Scheer, V.O. Snow, I. Vogeler, T.J. van der Weerden, Improving N2O emission estimates with the global N2O database. Curr. Opin. Environ. Sustain. 47, 13–20 (2020)

    Article  Google Scholar 

  9. T.D. Rapson, H. Dacres, Analytical techniques for measuring nitrous oxide. Trends Anal. Chem. 54, 65–74 (2014)

    Article  Google Scholar 

  10. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for gases, (Springer 2016).

  11. L. Tao, K. Sun, M.A. Khan, D.J. Miller, M.A. Zondlo, Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser. Opt. Express 20(27), 28106–28118 (2012)

    Article  ADS  Google Scholar 

  12. W. Ren, W. Jiang, F.K. Tittel, Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O. Appl. Phys. B 117(1), 245–251 (2014)

    Article  ADS  Google Scholar 

  13. J. Tang, B. Li, J. Wang, High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 μm. Atmos. Meas. Tech. 12(5), 2851–2861 (2019)

    Article  Google Scholar 

  14. M. Yang, Z. Wang, Q. Nie, K. Ni, W. Ren, Mid-infrared cavity-enhanced absorption sensor for ppb-level N2O detection using an injection-current-modulated quantum cascade laser. Opt. Express 29(25), 41634 (2021)

    Article  ADS  Google Scholar 

  15. D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, Laser photoacoustic spectroscopy: principles, instrumentation, and characterization. J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007)

    Google Scholar 

  16. T. Tomberg, T. Hieta, M. Vainio, L. Halonen, Cavity-enhanced cantilever-enhanced photo-acoustic spectroscopy. Analyst 144(7), 2291–2296 (2019)

    Article  ADS  Google Scholar 

  17. Z. Wang, Q. Wang, W. Zhang, H. Wei, Y. Li, W. Ren, Ultrasensitive photoacoustic detection in a high-finesse cavity with pound–Drever–Hall locking. Opt. Lett. 44(8), 1924 (2019)

    Article  ADS  Google Scholar 

  18. Z. Wang, Q. Wang, H. Zhang, S. Borri, I. Galli, A. Sampaolo, P. Patimisco, V.L. Spagnolo, P. De Natale, W. Ren, Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range. Photoacoustics 27, 100387 (2022)

    Article  Google Scholar 

  19. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27(21), 1902–1904 (2002)

    Article  ADS  Google Scholar 

  20. P. Patimisco, G. Scamarcio, F.K. Tittel, V. Spagnolo, Quartz-enhanced photoacoustic spectroscopy: A review. Sensors 14(4), 6165–6206 (2014)

    Article  ADS  Google Scholar 

  21. M. Jahjah, W. Ren, P. Stefański, R. Lewicki, J. Zhang, W. Jiang, J. Tarka, F.K. Tittel, A compact QCL based methane and nitrous oxide sensor for environmental and medical applications. Analyst 139(9), 2065–2069 (2014)

    Article  ADS  Google Scholar 

  22. A. Elefante, M. Giglio, A. Sampaolo, G. Menduni, P. Patimisco, V.M.N. Passaro, H. Wu, H. Rossmadl, V. Mackowiak, A. Cable, F.K. Tittel, L. Dong, V. Spagnolo, Dual-gas quartz-enhanced photoacoustic sensor for simultaneous detection of methane/nitrous oxide and water vapor. Anal. Chem. 91(20), 12866–12873 (2019)

    Article  Google Scholar 

  23. Y. Ma, R. Lewicki, M. Razeghi, F.K. Tittel, QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 21(1), 1008–1019 (2013)

    Article  ADS  Google Scholar 

  24. A. Zifarelli, R. De Palo, P. Patimisco, M. Giglio, A. Sampaolo, S. Blaser, J. Butet, O. Landry, A. Müller, V. Spagnolo, Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser. Photoacoustics 28, 100401 (2022)

    Article  Google Scholar 

  25. I.E. Gordon, L.S. Rothman, R.J. Hargreaves, R. Hashemi, E.V. Karlovets, F.M. Skinner, E.K. Conway, C. Hill, R.V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, A. Coustenis, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, E.J. Mlawer, A.V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, E.M. Adkins, A. Baker, A. Barbe, E. Canè, A.G. Császár, A. Dudaryonok, O. Egorov, A.J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, V.M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T.J. Lee, D.A. Long, A.A. Lukashevskaya, O.M. Lyulin, V.Y. Makhnev, W. Matt, S.T. Massie, M. Melosso, S.N. Mikhailenko, D. Mondelain, H.S.P. Müller, O.V. Naumenko, A. Perrin, O.L. Polyansky, E. Raddaoui, P.L. Raston, Z.D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D.W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S.A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S.N. Yurchenko, The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022)

    Article  Google Scholar 

  26. L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, QEPAS spectrophones: Design, optimization, and performance. Appl. Phys. B Lasers Opt. 100(3), 627–635 (2010)

    Article  ADS  Google Scholar 

  27. Z. Wang, Z. Li, W. Ren, Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser. Opt. Express 24(4), 4143 (2016)

    Article  ADS  Google Scholar 

  28. Z. Li, Z. Wang, Y. Qi, W. Jin, W. Ren, Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper. Sensors Actuators, B Chem. 248, 1023–1028 (2017)

    Article  Google Scholar 

  29. Q. Wang, Z. Wang, W. Ren, P. Patimisco, A. Sampaolo, V. Spagnolo, Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork. Sensors Actuators, B Chem. 268, 512–518 (2018)

    Article  Google Scholar 

  30. Z. Wang, Q. Wang, J.Y.L. Ching, J.C.Y. Wu, G. Zhang, W. Ren, A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser. Sensors Actuators, B Chem. 246, 710–715 (2017)

    Article  Google Scholar 

  31. Z. Wang, M. Yang, L. Fu, C. Chen, R. You, W. Ren, Rapid field measurement of ventilation rate using a quartz-enhanced photoacoustic SF6 gas sensor. Meas. Sci. Technol. 31(8), 085105 (2020)

    Article  ADS  Google Scholar 

  32. S. Dello, A. Sampaolo, P. Patimisco, G. Menduni, M. Giglio, C. Hoelzl, V.M.N. Passaro, H. Wu, L. Dong, V. Spagnolo, Photoacoustics quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species. Photoacoustics 21, 100227 (2021)

    Article  Google Scholar 

  33. L. Dong, R. Lewicki, K. Liu, P.R. Buerki, M.J. Weida, F.K. Tittel, Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B Lasers Opt. 107(2), 275–283 (2012)

    Article  ADS  Google Scholar 

  34. X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser. Sensors 16(2), 162 (2016)

    Article  ADS  Google Scholar 

  35. T. Tomberg, M. Vainio, T. Hieta, L. Halonen, Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 8, 1848 (2018)

    Article  ADS  Google Scholar 

  36. I. Bayrakli, A portable N2O sensor based on quartz-enhanced photoacoustic spectroscopy with a distributed-feedback quantum cascade laser for medical and atmospheric applications. Opt. Quantum Electron. 53(11), 642 (2021)

    Article  Google Scholar 

  37. M. Dostál, J. Suchánek, V. Válek, Z. Blatoňová, V. Nevrly, P. Bitala, P. Kubát, Z. Zelinger, Cantilever-enhanced photoacoustic detection and infrared spectroscopy of trace species produced by biomass burning. Energy Build. 32(10), 10163–10168 (2018)

    Google Scholar 

  38. F.M. Couto, M.S. Sthel, M.P.P. Castro, M.G. da Silva, M.V. Rocha, J.R. Tavares, C.F.M. Veiga, H. Vargas, Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production. Appl. Phys. B Lasers Opt. 117, 897–903 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Research Fund (14208221) from the Research Grants Council, Innovation and Technology Fund (GHP/129/20SZ) from the Innovation and Technology Commission, Hong Kong SAR, China; and National Natural Science Foundation of China (52122003), Shenzhen Science and Technology Innovation Committee (SGDX20210823103535009, RCBS20221008093311028), China.

Author information

Authors and Affiliations

Authors

Contributions

MY: Conceptualization, Methodology, Validation, Investigation, Writing – original draft. ZW: Methodology, Investigation, Supervision, Writing – review and editing. HS: Methodology, Validation, Investigation. MH: Validation. PY: Resources. QN: Validation. SL: Resources, Methodology. NA: Resources, Methodology. WR: Conceptualization, Methodology, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Zhen Wang or Wei Ren.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wang, Z., Sun, H. et al. Highly sensitive QEPAS sensor for sub-ppb N2O detection using a compact butterfly-packaged quantum cascade laser. Appl. Phys. B 130, 6 (2024). https://doi.org/10.1007/s00340-023-08140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08140-6

Navigation