Skip to main content
Log in

Toxicity of benzyl paraben on aquatic as well as terrestrial life

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Parabens are derivatives of alkyl esters of p-hydroxybenzoic acid and come in different classes. These compounds are primarily used as antimicrobial preservative agents in many commercial products, including cosmetics and pharmaceuticals. Accordingly, Benzyl paraben (BeP) is known to be a potential endocrine disruptor. The aim of this study was to determine the toxicity of benzyl paraben (BeP) on aquatic and terrestrial organisms, specifically Scenedesmus sp., Moina macrocopa, and Eisenia fetida. All the organisms were treated with different concentrations of BeP (0.025 mg/L and 1000 mg/L), and LC25, LC50, and LC90 values were used to measure the toxicity levels. Results showed the LC values of BeP for M. macrocopa (3.3 mg/L, 4.7 mg/L, 7.3 mg/L) and E. fetida (173.2 mg/L, 479.8 mg/L, 1062 mg/L), respectively. Toxicity tests on green algae (Scenedesmus sp.) were conducted, the green algae were subjected to various BeP concentration. At 50 mg/L of BeP, cell viability was reduced to 56.2% and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay indicated 35.4% viable cells. The chlorophyll value and the biochemical parameters of the algal cells were corroborative with the cell viability test. Lethal indices (LC50) for M. macrocopa and E. fetida were evaluated for their toxicity on biochemical properties and were found to be catalase (0.111 mg/L, 0.5 mg/L), lipid peroxidation (0.072 mg/L, 0.056 mg/L), and total protein (0.309 mg/L, 0.314 mg/L), respectively. Overall, this study demonstrated the toxic impact of BeP on non-target aquatic as well as terrestrial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant physiol 24(1):1–15. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  Google Scholar 

  • Barabasz W, Pikulicka A, Wzorek Z, Nowak AK (2019) Ecotoxicological aspects of the use of parabens in the production of cosmetics. Tech Trans 116(12):99–124

    Article  Google Scholar 

  • Barr L, Metaxas G, Harbach CAJ, Savoy LA, Darbre PD (2012) Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum. J Appl Toxicol 32(3):219–232

    Article  CAS  Google Scholar 

  • Błędzka D, Gromadzińska J, Wąsowicz W (2014) Parabens. From environmental studies to human health. Environ Int 67:27–42

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E (2015) Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep 7:9–16

    Article  Google Scholar 

  • Carmona E, Andreu V, Picó Y (2014) Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water. Sci Total Environ 484:53–63

    Article  CAS  Google Scholar 

  • Cherian P, Zhu J, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Heldreth B (2020) Amended safety assessment of parabens as used in cosmetics. Int J Toxicol 39:5S–97S

    Article  Google Scholar 

  • Dell’Aglio E, Cosentino F, Campanella L (2017) Use of algae Scenedesmus as bioindicators of water pollution from active ingredients. J Anal Pharm Res 6(5):00189

    Google Scholar 

  • Ding T, Yang M, Zhang J, Yang B, Lin K, Li J, Gan J (2017) Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. J Hazard Mater 330:127–134

    Article  CAS  Google Scholar 

  • Dobbins LL, Usenko S, Brain RA, Brooks BW (2009) Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. Environ Toxicol Chem 28(12):2744–2753

    Article  CAS  Google Scholar 

  • Dubovskiy IM, Martemyanov VV, Vorontsova YL, Rantala MJ, Gryzanova EV, Glupov VV (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp Biochem Physiol Part C: Toxicol Pharmacol 148(1):1–5

    CAS  Google Scholar 

  • Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á (2019) Differential toxicity of the UV-filters BP-3 and BP-4 in Chlamydomonas reinhardtii: a flow cytometric approach. Sci Total Environ 669:412–420

    Article  CAS  Google Scholar 

  • Freitas EC, Rocha O (2011) Acute toxicity tests with the tropical cladoceran Pseudosida ramosa: the importance of using native species as test organisms. Arch Environ Contam Toxicol 60:241–249

    Article  CAS  Google Scholar 

  • Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie 57(9-10):453–455

    Google Scholar 

  • Gour RS, Garlapati VK, Kant A (2020) Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr Microbiol 77:779–785

    Article  CAS  Google Scholar 

  • Herrera-Cogco E, L¢pez-Bayghen B, Hernández-Melchor D, López-Luna A, Palafox-Gómez C, Ramírez-Martínez L, López-Bello E, Albores A, López-Bayghen E (2020) Paraben concentrations found in human body fluids do not exert steroidogenic effects in human granulosa primary cell cultures. Toxicol Mech Methods 30(5):336–349. https://doi.org/10.1080/15376516.2020.1741052

    Article  CAS  Google Scholar 

  • Hu XL, Tang YY, Kwok ML, Chan KM, Chu KH (2020) Impact of juvenile hormone analogue insecticides on the water flea Moina macrocopa: growth, reproduction and transgenerational effect. Aquat Toxicol 220:105402

    Article  CAS  Google Scholar 

  • Jeong Y, Xue J, Park KJ, Kannan K, Moon HB (2018) Tissue-specific accumulation and body burden of parabens and their metabolites in small cetaceans. Environ Sci Technol 53(1):475–481

    Article  Google Scholar 

  • Kaka H, Opute PA, Maboeta MS (2021) Potential Impacts of Climate Change on the Toxicity of Pesticides towards Earthworms. J toxicol 2021:8527991. https://doi.org/10.1155/2021/8527991

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43(2):363–380

    Article  CAS  Google Scholar 

  • Lee J, Bang SH, Kim YH, Min J (2018) Toxicities of four parabens and their mixtures to Daphnia magna and Aliivibrio fischeri. Environ Health Toxicol 33:4

    Article  Google Scholar 

  • Lee SH, Xiong JQ, Ru S, Patil SM, Kurade MB, Govindwar SP, Jeon BH (2020) Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga Scenedesmus obliquus. Journal of hazardous materials 389:122149

    Article  CAS  Google Scholar 

  • Li J, Wang Y, Li N, He Y, Xiao H, Fang D, Chen C (2022) Toxic effects of bisphenol a and bisphenol S on Chlorella pyrenoidosa under single and combined action. Int J Environ Res Public Health 19(7):4245

    Article  CAS  Google Scholar 

  • Liao C, Kannan K (2018) Temporal trends of parabens and their metabolites in mollusks from the Chinese Bohai Sea during 2006–2015: species-specific accumulation and implications for human exposure. Environ Sci Technol 52(16):9045–9055

    Article  CAS  Google Scholar 

  • Lin H, Jia Y, Han F, Xia C, Zhao Q, Zhang J, Li E (2022) Toxic effects of waterborne Benzyl paraben on the growth, antioxidant capacity and lipid metabolism of Nile tilapia (Oreochromis niloticus). Aquat Toxicol 248:106197

    Article  CAS  Google Scholar 

  • Mayer P, Frickmann J, Christensen ER, Nyholm N (1998) Influence of growth conditions on the results obtained in algal toxicity tests. Environ Toxicol Chem Int J 17(6):1091–1098

    Article  CAS  Google Scholar 

  • Miglani R, Bisht SS (2019) World of earthworms with pesticides and insecticides. Interdiscip Toxicol 12(2):71–82

    Article  CAS  Google Scholar 

  • Moshfegh A, Jalali A, Salehzadeh A, Sadeghi Jozani A (2019) Biological synthesis of silver nanoparticles by cell‐free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF‐7 cell lines. Micro Nano Lett 14(5):581–584

    Article  CAS  Google Scholar 

  • Nagar Y, Thakur RS, Parveen T, Patel DK, Ram KR, Satish A (2020) Toxicity assessment of parabens in Caenorhabditis elegans. Chemosphere 246:125730

    Article  CAS  Google Scholar 

  • Nowak K, Ratajczak–Wrona W, Górska M, Jabłońska E (2018) Parabens and their effects on the endocrine system. Mol Cell Endocrinol 474:238–251

    Article  CAS  Google Scholar 

  • Oliveira MM, Martins F, Silva MG, Correia E, Videira R, Peixoto F (2020) Use of parabens (methyl and butyl) during the gestation period: mitochondrial bioenergetics of the testes and antioxidant capacity alterations in testes and other vital organs of the F1 generation. Antioxidants 9(12):1302

    Article  CAS  Google Scholar 

  • Pearcy K, Elphick J, Burnett‐Seidel C (2015) Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors. Environ Toxicol Chem 34(7):1642–1648

    Article  CAS  Google Scholar 

  • Peng X, Zheng K, Liu J, Fan Y, Tang C, Xiong S (2018) Body size–dependent bioaccumulation, tissue distribution, and trophic and maternal transfer of phenolic endocrine‐disrupting contaminants in a freshwater ecosystem. Environ Toxicol Chem 37(7):1811–1823

    Article  CAS  Google Scholar 

  • Puerta YT, Guimarães PS, Martins SE, Martins CDMG (2020) Toxicity of methylparaben to green microalgae species and derivation of a predicted no effect concentration (PNEC) in freshwater ecosystems. Ecotoxicol Environ Saf 188:109916

    Article  CAS  Google Scholar 

  • Ram S, Paliwal C, Mishra S (2019) Growth medium and nitrogen stress sparked biochemical and carotenogenic alterations in Scenedesmus sp. CCNM 1028. Bioresour Technol Rep 7:100194

    Article  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  Google Scholar 

  • Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and environmental safety 74(5):1180–1187

    Article  CAS  Google Scholar 

  • Samarasinghe SVAC, Krishnan K, Aitken RJ, Naidu R, Megharaj M (2021) Persistence of the parabens in soil and their potential toxicity to earthworms. Environmental Toxicology and Pharmacology 83:103574

    Article  Google Scholar 

  • Samarasinghe SVAC, Krishnan K, Naidu R, Megharaj M, Miller K, Fraser B, Aitken RJ (2018) Parabens generate reactive oxygen species in human spermatozoa. Andrology 6(4):532–541

    Article  CAS  Google Scholar 

  • Şentürk T, Yıldız Ş (2016) Adsorbent effect of Chlorella vulgaris and Scenedesmus sp.(Chlorophyta) for the removal of some heavy metals and nutrients/Bazı ağır metal ve nutrient gideriminde Chlorella vulgaris ve Scenedesmus sp.(Chlorophyta)’nin adsorbent etkisi. Turk J Biochem 41(2):87–95

    Article  Google Scholar 

  • Silva DC, Serrano L, Oliveira TM, Mansano AS, Almeida EA, Vieira EM (2018) Effects of parabens on antioxidant system and oxidative damages in Nile tilapia (Oreochromis niloticus). Ecotoxicol Environ Saf 162:85–91

    Article  CAS  Google Scholar 

  • Song C, Hu H, Ao H, Wu Y, Wu C (2017) Removal of parabens and their chlorinated by-products by periphyton: influence of light and temperature. Environ Sci Pollut Res 24:5566–5575

    Article  CAS  Google Scholar 

  • Soni MG, Carabin IG, Burdock GA (2005) Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol 43(7):985–1015

    Article  CAS  Google Scholar 

  • Thorp JH, Covich AP (eds) (2009) Ecology and classification of North American freshwater invertebrates. Academic press, Cambridge, Massachusetts, USA

  • Van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods in molecular biology (Clifton, N.J.), 731, 237–245. https://doi.org/10.1007/978-1-61779-080-5_20

  • Vimala TPTV, Poonghuzhali TV (2015) Estimation of pigments from seaweeds by using acetone and DMSO. Int J Sc Res 4(10):1850–1854

    Google Scholar 

  • Wang J, Wang J, Xu C, Liu R, Chen Y (2016) Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes. J Hazard Mater 307:173–183. https://doi.org/10.1016/j.jhazmat.2015.11.060

    Article  CAS  Google Scholar 

  • Wang Y, Oberley LW, Murhammer DW (2001) Evidence of oxidative stress following the viral infection of two lepidopteran insect cell lines. Free Radic Biol Med 31(11):1448–1455

    Article  CAS  Google Scholar 

  • Xu D, Xie Y, Li J (2022) Toxic effects and molecular mechanisms of sulfamethoxazole on Scenedesmus obliquus. Ecotoxicol Environ Saf 232:113258

    Article  CAS  Google Scholar 

  • Xue J, Kannan K (2016) Accumulation profiles of parabens and their metabolites in fish, black bear, and birds, including bald eagles and albatrosses. Environ Int 94:546–553

    Article  CAS  Google Scholar 

  • Xue J, Sasaki N, Elangovan M, Diamond G, Kannan K (2015) Elevated accumulation of parabens and their metabolites in marine mammals from the United States coastal waters. Environmental science &. technology 49(20):12071–12079

    Article  CAS  Google Scholar 

  • Yang YJ, Hong YP, Chae SA (2016) Reduction in semen quality after mixed exposure to bisphenol A and isobutylparaben in utero and during lactation periods. Hum Exp Toxicol 35(8):902–911. https://doi.org/10.1177/0960327115608927

    Article  CAS  Google Scholar 

  • Zhang H, Quan Q, Li X, Sun W, Zhu K, Wang X, Sun X, Zhan M, Xu W, Lu L, Fan J, Gao Y (2020) Occurrence of parabens and their metabolites in the paired urine and blood samples from Chinese university students: Implications on human exposure. Environ res 183:109288. https://doi.org/10.1016/j.envres.2020.109288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank REVA University for providing the research facilities for smooth conduction of research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PM. Data curation: AN and MB. Writing original draft preparation: AN and MB. Visualization: PM. Supervision: PM. Project administration: PM.

Corresponding author

Correspondence to Prabhakar Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumtaz, B., Nair, A. & Mishra, P. Toxicity of benzyl paraben on aquatic as well as terrestrial life. Ecotoxicology 32, 1272–1284 (2023). https://doi.org/10.1007/s10646-023-02717-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02717-9

Keywords

Navigation