Skip to main content

Advertisement

Log in

Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

High-temperature electrochemical synthesis (HTES) in molten salts is highly promising among the up-to-date methods for the production of carbide powders. Ultrafine composite powders of tungsten carbides (WC|C, WC|C|Pt, W2C|WC, and W2C|W) were synthesized using the HTES method in electrolytic baths with different chemical compositions under various synthesis conditions (cathode current density, CO2 pressure in the electrolyzer, temperature, and cathode material). Composite powders (up to 3 wt.% free carbon) with a WC particle size of 20–30 nm were prepared using Na, K|Cl (1 : 1)–Na2W2O7 (6.4 wt.%)–CO2 (1.25 MPa) and Na, K|Cl (1 : 1)–Na2WO4 (12.0 wt.%)–NaPO3 (0.7 wt. %)–CO2 (1.25 MPa) electrolytic baths at a temperature of 750°C. When the CO2 pressure was reduced to 0.75 MPa, composite W2C|WC powders formed at the cathode. The ratio of carbide phases in the composites depended on the initial concentration of tungsten salts in the electrolyte and on the CO2 gas pressure in the electrolyzer. The addition of Li2CO3 (4.5 wt.%) to the electrolytic salt mixture decreased the tungsten carbide particles to 10 nm, changed their morphology, and increased the free carbon content in the composite up to 5 wt.%. The specific surface area of the powder increased by a factor of 4 to 7 (from 20–35 to 140 m2/g). The resulting products were modified with fine platinum particles through the use of platinum cathodes. The HTES method demonstrated its potential for producing tungsten carbide powders with the properties allowing their use as electrocatalysts in the hydrogen evolution reaction. For the WC|C composite powders synthesized in the Na, K|Cl–Na2W2O7–Li2CO3–CO2 system, the hydrogen evolution potential was –0.02 V relative to the normal hydrogen electrode, the overpotential η at a current density of 10 mA/cm2 was –110 mV, the exchange current was 7.0 ⋅ 10–4 A/cm2, and the Tafel slope was –85 mV/dec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. I. Konyashin, “Cemented carbides for mining, construction and wear parts,” Compr. Hard Mater., 1, 425–451 (2014).

    Article  CAS  Google Scholar 

  2. J. Sun, J. Zhao, Zh. Huang, K. Yan, X. Shen, J. Xing, Y. Gao, Y. Jian, H. Yang, and B. Li, “A review on binderless tungsten carbide: development and application,” Nano-Micro Lett., 12, Issue 13, 1–37 (2020).

    CAS  Google Scholar 

  3. D. Göhl, A.M. Mingers, S. Geiger, M. Schalenbach, S. Cherevko, J. Knossalla, D. Jalalpoor, F. Schüth, K.J.J. Mayrhofer, and M. Ledendecker, “Electrochemical stability of hexagonal tungsten carbide in the potential window of fuel cells and water electrolyzers investigated in a half-cell configuration,” Electrochim. Acta, 270, 70–76 (2018).

    Article  Google Scholar 

  4. S. Emin, C. Altinkaya, A. Semerci, H. Okuyucu, A. Yildiz, and P. Stefanov, “Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution,” Appl. Catal. B: Environ., 236, 147–153 (2018).

    Article  CAS  Google Scholar 

  5. C.H. Kim, Y.G. Hur, S.H. Lee, and K.Y. Lee, “Hydrocracking of vacuum residue using nano-dispersed tungsten carbide catalyst,” Fuel, 233, 200–206 (2018).

    Article  CAS  Google Scholar 

  6. W. Mounfield, A. Harale, and Y. Román-Leshkov, “Impact of morphological effects on the activity and stability of tungsten carbide catalysts for dry methane reforming,” Energy Fuels, 33, Issue 6, 5544–5550 (2019).

    Article  CAS  Google Scholar 

  7. S. Ananthaneni, Z. Smith, and R.B. Rankin, “Graphene supported tungsten carbide as catalyst for electrochemical reduction of CO2,” Catalysts, 9, Issue 7, 604 (2019).

  8. P. Bretzler, K. Köhler, A.V. Nikiforov, E. Christensen, R.W. Berg, and N.J. Bjerrum, “Efficient water splitting electrolysis on a platinum-free tungsten carbide electrocatalyst in molten CsH2PO4 at 350–390°C,” Int. J. Hydrogen Energy, 45, Issue 41, 21262–21272 (2020).

    Article  CAS  Google Scholar 

  9. X. Xie, L. Liu, S. Chen, Y. Zhou, and X. Hu, “Investigation of commercial tungsten carbide as an HER electrocatalyst in PEMWE,” Int. J. Electrochem. Sci., 15, 3980–3995 (2020).

    Article  CAS  Google Scholar 

  10. A. Šestan, J. Zavašnik, M.M. Kržmance, M. Kocen, P. Jenuš, S. Novak, M. Čeh, and G. Dehm, “Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials,” J. Nucl. Mater., 524, 135–140 (2019).

    Article  Google Scholar 

  11. N. Han, K. Liu, X. Zhang, M. Wang, P. Du, Z. Huang, D. Zhou, Q. Zhang, T. Gao, Y. Jia, L. Luo, J. Wang, and X. Sun, “Highly efficient and stable solar-powered desalination by tungsten carbide nanoarray film with sandwich wettability,” Sci. Bull., 64, Issue 6, 391–399 (2019).

    Article  CAS  Google Scholar 

  12. N.J. AbuAlRoos, M.N. Azman, N.A.B. Amin, and R. Zainon, “Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine,” Phys. Med.: Eur. J. Med. Phys., 78, 48–57 (2020).

  13. Y.-C. Wu, Y. Yang, X.-Y. Tan, L. Luo, X. Zan, X.-Y. Zhu, Q. Xu, and J.-G. Cheng, “Preparation technology of ultra-fine tungsten carbide powder: an overview,” Front. Mater., 7, 1–11 (2020).

    Article  Google Scholar 

  14. R. Yang, T. Xing, R. Xu, and M. Li, “Molten salt synthesis of tungsten carbide powder using a mechanically activated powder,” Int. J. Refract. Met. Hard Mater., 29, Issue 1, 138–140 (2011).

    Article  CAS  Google Scholar 

  15. C. He, H. Meng, X. Yao, and P.K. Shen, “Rapid formation of nanoscale tungsten carbide on graphitized carbon for electrocatalysis,” Int. J. Hydrogen Energy, 37, Issue 10, 8154–8160 (2012).

    Article  CAS  Google Scholar 

  16. P. Ranjan, T. Kurosaki, H. Suematsu, R. Jayaganthan, and R. Sarathi, “Formation of tungsten carbide nanoparticles by wire explosion process,” Int. J. Appl. Ceram. Technol., 17, Issue 1, 304–310 (2020).

    Article  CAS  Google Scholar 

  17. B. Sankar, M. Kamaraj, S. Chakravarthy, and R. Sarathi, “Synthesis and characterization of hexagonal nano tungsten carbide powder using multi walled carbon nanotubes,” Int. J. Refract. Met. Hard Mater., 33, 53–57 (2012).

    Article  Google Scholar 

  18. T. Dash and B.B. Nayak, “Preparation of WC–W2C composites by arc plasma melting and their characterizations,” Ceram. Int., 39, Issue 3, 3279–3292 (2013).

    Article  CAS  Google Scholar 

  19. Z. Yan, M. Cai, and P. Shen, “Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis,” Sci. Rep., 3, Issue 1646, 1–7 (2013).

    Google Scholar 

  20. V.N. Krasil’nikov, E.V. Polyakov, N.A. Khlebnikov, N.V. Tarakina, and M.V. Kuznetsov, “Precursor synthesis and properties of nanodispersed tungsten carbide and nanocomposites WC:nC,” Ceram. Int., 43, Issue 5, 4131–4138 (2017).

  21. T. Shigeru, I.A. Bataev, O. Hayato, and H. Kazuyuki, “Synthesis of metastable cubic tungsten carbides by electrical explosion of tungsten wire in liquid paraffin,” Adv. Powder Technol., 29, 2447–2455 (2018).

    Article  Google Scholar 

  22. Y. Wu, J. Dang, Z. Lv, and R. Zhang, “The preparation of tungsten carbides and tungsten powders by reaction of tungsten trioxide with methanol,” Int. J. Refract. Met. Hard Mater., 76, 99–107 (2018).

    Article  CAS  Google Scholar 

  23. I.A. Novoselova, E.P. Nakoneshnaya, N.A. Karpushin, V.N. Bykov, G.I. Dovbeshko, and A.D. Rynder, “Electrochemical synthesis of composites based on nanosized tungsten carbide powders from salt melts,” Metallofiz. Noveish. Tekhnol., 36, No. 4, 491–508 (2014).

    Article  CAS  Google Scholar 

  24. I.A. Novoselova, S.V. Kuleshov, E.N. Fedoryshena, M.A. Karpushin, and V.M. Bykov, “Electrochemical synthesis of tungsten carbides in salt melts for electrocatalysis,” Ukr. Khim. Zh., 82, No. 11, 67–76 (2016).

    CAS  Google Scholar 

  25. I.A. Novoselova, S.V. Kuleshov, E.N. Fedoryshena, and V.N. Bykov, “Electrochemical synthesis of tungsten carbide in molten salts, its properties and applications,” ECS Trans., 86, Issue 14, 81–94 (2018).

    Article  CAS  Google Scholar 

  26. I.A. Novoselova, S.V. Kuleshov, A.O. Omelchuk, V.M. Bykov, and O.M. Fesenko, “Electroreduction of ditungstate and carbonate anions in a chloride melt,” Ukr. Khim. Zh., 87, No. 12, 97–108 (2021).

    CAS  Google Scholar 

  27. I.A. Novoselova, S.V. Kuleshov, A.O. Omelchuk, V.M. Bykov, and O.M. Fesenko, “Electroreduction of Li2CO3 in an equimolar melts of sodium and potassium chlorides,” Ukr. Khim. Zh., 87, No. 6, 70–81 (2021).

    CAS  Google Scholar 

  28. I.A. Novoselova, S.V. Kuleshov, S.V. Volkov, and V.N. Bykov, “Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts,” Electrochim. Acta, 211, 343–355 (2016).

    Article  CAS  Google Scholar 

  29. L.G. Cançado, K. Takai, and T. Enoki, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy,” Appl. Phys. Lett., 88, Issue 16, 163106 (2006).

  30. I.A. Novoselova, S.V. Kuleshov, A.O. Omelchuk, R.M. Savchuk, and V.M. Bykov, “Thermal stability of electrolytic nanocrystalline tungsten carbide,” Ukr. Khim. Zh., 84, No. 3, 62–68 (2018).

    CAS  Google Scholar 

  31. C.F. Holder and R.E. Schaak, “Tutorial on powder X-ray diffraction for characterizing nanoscale materials,” ACS Nano, 13, Issue 7, 7359–7365 (2019).

    Article  CAS  Google Scholar 

  32. W. Zhou, R. Apkarian, Z.L. Wang, and D. Joy, “Fundamentals of scanning electron microscopy (SEM),” Scanning Microscopy Nanotechnology, Springer, New York (2006), pp. 1–40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Novoselova.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 62, Nos. 3–4 (550), pp. 14–27, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoselova, I.A., Kuleshov, S.V., Omelchuk, A.O. et al. Effect of Electrochemical Synthesis Conditions on the Composition, Structure, and Morphology of Tungsten Carbide Powders. Powder Metall Met Ceram 62, 142–152 (2023). https://doi.org/10.1007/s11106-023-00378-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00378-1

Keywords

Navigation