Skip to main content
Log in

Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an inflatable cylindrical boom using heat-actuated SMA wires when the inflation gas is vented out from the assembly after complete deployment. Kapton-based and Kapton-SMA-based booms are analyzed numerically for bending stiffness under inflation and no-inflation pressure, followed by experimental validation. At this end, a customized heat test chamber is developed to conduct the required experiments. Furthermore, a parametric study is also performed to find the effect of materials and design parameters on the boom’s stiffness. Before all, the non-linear behavior of double-layered laminated Kapton is found by curve fitting of stretch test data with the optimized different material model parameters to find the best-fitted material model under the hyperelastic materials category. The study helps to find the membrane behavior and rigidization of the inflatable boom in a reversible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  • Allred, R., Hoyt, A., Scarborough, S., Cadogan, D., McElroy, P.: UV Rigidizable Carbon-Reinforced Isogrid Inflatable Booms. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Denver, Colorado (2002)

  • Anssari-Benam, A., Horgan, C.O.: Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibility. Eur. J. Mech. a. Solids 92, 104443 (2022). https://doi.org/10.1016/j.euromechsol.2021.104443

    Article  MathSciNet  MATH  Google Scholar 

  • Apedo, K.L., Ronel, S., Jacquelin, E., Massenzio, M., Bennani, A.: Theoretical analysis of inflatable beams made from orthotropic fabric. Thin-Walled Struct. 47, 1507–1522 (2009). https://doi.org/10.1016/j.tws.2009.06.003

    Article  MATH  Google Scholar 

  • Bar-Cohen, Y.: Electroactive polymers: current capabilities and challenges. Presented at the SPIE’s 9th Annual International Symposium on Smart Structures and Materials , San Diego, CA July 10 (2002)

  • Bashir, M., Rajendran, P.: A review on electroactive polymers development for aerospace applications. J. Intell. Mater. Syst. Struct. 29, 3681–3695 (2018). https://doi.org/10.1177/1045389X18798951

    Article  Google Scholar 

  • Beukers, A.: Bending of anisotropic inflated cylindrical beams. Thin-Walled Struct. 43, 461–475 (2005). https://doi.org/10.1016/j.tws.2004.07.015

    Article  Google Scholar 

  • Block, J., Straubel, M., Wiedemann, M.: Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronaut. 68, 984–992 (2011). https://doi.org/10.1016/j.actaastro.2010.09.005

    Article  Google Scholar 

  • Chandra, A., Thangavelautham, J., Babuscia, A.: Modular inflatable space structures. In: 2018 IEEE Aerospace Conference. pp. 1–9. IEEE, Big Sky, MT (2018)

  • Comer, R.L., Levy, S.: Deflections of an inflated circular-cylindrical cantilever beam. AIAA J. 1, 1652–1655 (1963). https://doi.org/10.2514/3.1873

    Article  MATH  Google Scholar 

  • Davids, W.G.: In-plane load-deflection behavior and buckling of pressurized fabric arches. J. Struct. Eng. 135, 1320–1329 (2009). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000068

    Article  Google Scholar 

  • de la Fuente, H., Raboin, J., Valle, G., Spexarth, G.: TransHab NASA’s large-scale inflatable spacecraft. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. American Institute of Aeronautics and Astronautics, Atlanta,GA,U.S.A. (2000)

  • Du, H., Yao, Y., Zhao, Y.: A space deployable antenna model based on shape memory alloy composite with folding-deploying two-way behavior. Polym. Adv. Technol. Pat. 33(12), 4214–4222 (2022). https://doi.org/10.1002/pat.5853

    Article  Google Scholar 

  • Forbes, F.W.: Expandable structures for space applications: Defense Technical Information Center, Fort Belvoir, VA (1964)

  • Gajewski, M., Szczerba, R., Jemioło, S.: Modelling of elastomeric bearings with application of Yeoh hyperelastic material model. Procedia Eng. 111, 220–227 (2015). https://doi.org/10.1016/j.proeng.2015.07.080

    Article  Google Scholar 

  • Gouzman, I., Grossman, E., Verker, R., Atar, N., Bolker, A., Eliaz, N.: Advances in polyimide-based materials for space applications. Adv. Mater. 31, 1807738 (2019). https://doi.org/10.1002/adma.201807738

    Article  Google Scholar 

  • Grahne, M.S., Cadogan, D.P.: Revolutionary design concepts for inflatable space strucutures. Presented at the World Aviation Congress and Exposition October 19 (1999)

  • Guidanean, K., Lichodziejewski, D.: An inflatable rigidizable truss structure based on new Sub-Tg polyurethane composites. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Denver, Colorado (2002)

  • Horgan, C.O.: The remarkable Gent constitutive model for hyperelastic materials. Int. J. Non Linear Mech. 68, 9–16 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.05.010

    Article  Google Scholar 

  • Hu, J., Chen, W., Qu, Y., Yang, D.: Safety and serviceability of membrane buildings: a critical review on architectural, material and structural performance. Eng. Struct. 210, 110292 (2020). https://doi.org/10.1016/j.engstruct.2020.110292

    Article  Google Scholar 

  • Jin, F., Zhao, C., Xu, P., Xue, J., Xia, F.: Nonlinear eccentric bending and buckling of laminated cantilever beams actuated by embedded pre-stretched SMA wires. Compos. Struct. 284, 115211 (2022). https://doi.org/10.1016/j.compstruct.2022.115211

    Article  Google Scholar 

  • Kennedy, K.J., Adams, C.M.: ISS TransHab: An inflatable habitat. In: Space 2000. pp. 89–100. American Society of Civil Engineers, Albuquerque, New Mexico, USA (2000)

  • Khajamoinuddin, S.M., Chatterjee, A., Bhat, M., Harursampath, D., Gundiah, N.: Mechanical characterization of a woven multi-layered hyperelastic composite laminate under uniaxial loading. J. Compos. Mater. 55, 3229–3239 (2021). https://doi.org/10.1177/00219983211011528

    Article  Google Scholar 

  • Kimoto, Y., Fujita, T., Furuta, N., Kitamura, A., Suzuki, H.: Development of space-qualified photocurable-silsesquioxane-coated polyimide films. J. Spacecr. Rockets. 53, 1028–1034 (2016). https://doi.org/10.2514/1.A33488

    Article  Google Scholar 

  • Kugler, J., Cherston, J., Joyce, E.R., Shestople, P., Snyder, M.P.: Applications for the Archinaut in space manufacturing and assembly capability. In: AIAA SPACE and Astronautics Forum and Exposition. American Institute of Aeronautics and Astronautics, Orlando, FL (2017)

  • Latorre, M., Rosa, E.D., Montáns, F.J.: Understanding the need of the compression branch to characterize hyperelastic materials. Int. J. Non Linear Mech. 89, 14–24 (2017). https://doi.org/10.1016/j.ijnonlinmec.2016.11.005

    Article  Google Scholar 

  • Lee, I.: Configulation control of aerospace structures with smart materials. J. Adv. Sci. 18(12), 1–5 (2006)

    Article  Google Scholar 

  • Litteken, D.A.: Inflatable technology: using flexible materials to make large structures. In: Bar-Cohen, Y. and Anderson, I.A. (Eds.) Electroactive Polymer Actuators and Devices (EAPAD) XXI. p. 2. SPIE, Denver, USA (2019)

  • Main, J.A.: Analysis and design of inflatable aerospace structures. Vanderbilt University, Vanderbilt (1993)

    Google Scholar 

  • Mallikarachchi, H.M.Y.C., Pellegrino, S.: Design of ultrathin composite self-deployable booms. J. Spacecr. Rockets. 51, 1811–1821 (2014). https://doi.org/10.2514/1.A32815

    Article  Google Scholar 

  • Sakamoto, H., Park, K.C., Miyazaki, Y.: Dynamic wrinkle reduction strategies for cable suspended membrane structures. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andamp; Materials Conference. American Institute of Aeronautics and Astronautics, Palm Springs, California (2004)

  • Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets. 51, 762–778 (2014). https://doi.org/10.2514/1.A32598

    Article  Google Scholar 

  • Secheli, G., Viquerat, A., Aglietti, G.: Mechanical development of a novel inflatable and rigidizable structure. In: 3rd AIAA Spacecraft Structures Conference. American Institute of Aeronautics and Astronautics, San Diego, California, USA (2016)

  • Seedhouse, E.: Genesis I and II. In: Bigelow Aerospace. Springer International Publishing, Cham (2015a)

    Chapter  Google Scholar 

  • Seedhouse, E.: Bigelow’s Space Station. In: Bigelow Aerospace. Springer International Publishing, Cham (2015b)

    Chapter  Google Scholar 

  • Seedhouse, E.: Bigelow aerospace. Springer International Publishing, Cham (2015c)

    Book  Google Scholar 

  • Sharma, H., Upadhyay, S.H.: Geometric design and deployment behavior of origami inspired conical structures. Mech. Based Des. Struct. Mach. 51(1), 113–137 (2020). https://doi.org/10.1080/15397734.2020.1833738

    Article  Google Scholar 

  • Shen, Y., Montminy, S., Zheng, W., Tokateloff, V., Potvin, M.-J., Akhras, G.: Large SAR membrane antenna deployable structure design and dynamic simulation. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Honolulu, Hawaii (2007)

  • Sodano, H.A., Park, G., Inman, D.J.: An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mech. Syst. Signal Process. 18, 683–697 (2004). https://doi.org/10.1016/S0888-3270(03)00081-5

    Article  Google Scholar 

  • Tamadapu, G., DasGupta, A.: Finite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-section. Int. J. Non Linear Mech. 49, 31–39 (2013). https://doi.org/10.1016/j.ijnonlinmec.2012.09.008

    Article  Google Scholar 

  • Tao, Q., Wang, C., Xue, Z., Xie, Z., Tan, H.: Wrinkling and collapse of mesh reinforced membrane inflated beam under bending. Acta Astronaut. 128, 551–559 (2016). https://doi.org/10.1016/j.actaastro.2016.08.021

    Article  Google Scholar 

  • Thomas, J.-C., Wielgosz, C.: Deflections of highly inflated fabric tubes. Thin Walled Struct. 42, 1049–1066 (2004). https://doi.org/10.1016/j.tws.2004.03.007

    Article  Google Scholar 

  • Upadrashta, D., Yang, Y.: Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications. Sens. Actuat Phys. 244, 223–232 (2016). https://doi.org/10.1016/j.sna.2016.04.043

    Article  Google Scholar 

  • Veldman, S.L.: Wrinkling prediction of cylindrical and conical inflated cantilever beams under torsion and bending. Thin-Walled Struct. 44, 211–215 (2006). https://doi.org/10.1016/j.tws.2006.01.003

    Article  Google Scholar 

  • Vertegaal, C.J.C., Bentum, M.J., Pourshaghaghi, H.R.: Using shape memory alloy for cubesat antenna design in space. In: 2021 15th European Conference on Antennas and Propagation (EuCAP). pp. 1–5. IEEE, Dusseldorf, Germany (2021)

  • Wang, C.G., Tan, H.F.: Experimental and numerical studies on wrinkling control of an inflated beam using SMA wires. Smart Mater. Struct. 19, 105019 (2010). https://doi.org/10.1088/0964-1726/19/10/105019

    Article  Google Scholar 

  • Wang, C.-G., Tan, H.-F., Du, X.-W., He, X.-D.: A new model for wrinkling and collapse analysis of membrane inflated beam. Acta Mech. Sin. 26, 617–623 (2010). https://doi.org/10.1007/s10409-010-0348-1

    Article  MATH  Google Scholar 

  • Webber, J.: Deflections of inflated cylindrical cantilever beams subjected to bending and torsion. Aeronaut. J. 86(858), 306–312 (1982)

    Article  Google Scholar 

  • Wei, J., Ding, H., Chai, Y., Eriksson, A., Tan, H.: Quasi-static folding and deployment of rigidizable inflatable beams. Int. J. Solids Struct. 232, 111063 (2021). https://doi.org/10.1016/j.ijsolstr.2021.111063

    Article  Google Scholar 

  • Wright, J.S., Jones, A., Farmer, B., Rodman, D.L., Minton, T.K.: POSS-enhanced colorless organic/inorganic nanocomposite (CORIN®) for atomic oxygen resistance in low earth orbit. CEAS Space J. 13, 399–413 (2021). https://doi.org/10.1007/s12567-021-00347-7

    Article  Google Scholar 

  • Yan, Z., Zhang, L., Jin, W.: Improved finite element method for inflated beams with local wrinkles. AIAA J. 60, 4278–4287 (2022). https://doi.org/10.2514/1.J061439

    Article  Google Scholar 

  • Yoo, E.-J., Roh, J.-H., Han, J.-H.: Wrinkling control of inflatable booms using shape memory alloy wires. Smart Mater. Struct. 16, 340–348 (2007). https://doi.org/10.1088/0964-1726/16/2/012

    Article  Google Scholar 

Download references

Acknowledgements

The current study is supported and funded by the Indian Space Research Organization (ISRO), India, under grant no. ISR-1248-MID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Upadhyay.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 1810 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, V., Upadhyay, S.H. & Singh, K.S. Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom. Int J Mech Mater Des (2023). https://doi.org/10.1007/s10999-023-09690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10999-023-09690-5

Keywords

Navigation