Skip to main content
Log in

Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Results of lidar observations at a wavelength of 532 nm in Obninsk over the period from 2012 to 2021 are presented. In 2014–2018 the stratosphere aerosol was in a state close to the background. In 2019, aerosol maxima were observed in the 15–30 km layer associated with the eruptions of the Ambae and Raikoke volcanoes. The seasonal behavior of the integral backscattering coefficient in the background period is presented. In the lower layer of the stratosphere of 13–23 km, an increase in backscattering was observed in the second half of the year, associated with an increase in the number of natural fires. In the 23–30 km layer, the maximum backscattering was observed in summer. It was found that the contribution of the lower layer of 10–15 km to the optical thickness of the entire layer of 10–30 km is on average 61%. This implies the need to take into account the aerosol of the lower layer of 10–15 km in the overall balance of stratospheric aerosol in chemical–climatic models of the stratosphere. In the second half of the year, aerosol of natural fires is often observed in the 10–15 km layer. In some episodes, the addition of natural fire aerosol to an optical layer thickness of 10–30 km with respect to the spherical sulfuric acid aerosol ranges from 50 to 150%. At the same time, in annual mean terms, this additive in 2014–2021 on average was only 10%. In the last 5 years, there has been a trend towards an increase in the content of aerosol from natural fires, but so far the content of sulfate aerosol in the stratosphere remains predominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Andersson, S.M., Martinsson, B.G., Vernier, J-P., Friberg, J., Brenninkmeijer, C.A.M., Hermann, M., van Velthoven, P.F.G., and Zahn, A., Significant radiative impact of volcanic aerosol in the lowermost stratosphere, Nat. Commun., 2015, vol. 6, pp. 692–700. https://doi.org/10.1038/ncomms8692

    Article  Google Scholar 

  2. Andronova, N.G., Rozanov, E., Yang, F., Schlesinger, M.E., and Stenchikov, G.L., Radiative forcing by volcanic aerosols from 1850 through 1994, J. Geophys. Res., 1999, vol. 104, pp. 16807–16826.

    Article  Google Scholar 

  3. Ansmann, A., Ohneiser, K., Mamouri, R-E., Knop, D.A., Veselovskii, I., Baars, H., Engelmann, R., Foth, A., Jimenez, C., Seifert, P., and Barja, B., Tropospheric and stratospheric wildfire smoke profiling with lidar: Mass, surface area, CCN, and INP retrieval, Atmos. Chem. Phys., 2021, vol. 21, pp. 9779–9807. https://doi.org/10.5194/acp-21-9779-2021

    Article  Google Scholar 

  4. Blake, D.F. and Kato, K., Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere, J. Geophys. Res., 1995, vol. 100, pp. 7195–7202.

    Article  Google Scholar 

  5. Brühl, C., Schallock, J., Klingmüller, K., Robert, C., Bingen, C., Clarisse, L., Heckel, A., North, P., and Rieger, L., Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data, Atmos. Chem. Phys., 2018, vol. 18, pp. 12845–12857. https://doi.org/10.5194/acp-18-12845-2018

    Article  Google Scholar 

  6. Burton, S.P., Hair, J.W., Kahnert, M., Ferrar, R.A., Hostetler, C.A., Cook, A.L., Harper, D.B., Berkoff, T.A., Seaman, S.T., Collins, J.E., Fenn, M.A., and Rogers, R.R., Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 2015, vol. 15, pp. 13453–13473. https://doi.org/10.5194/acp-15-13453-2015

    Article  Google Scholar 

  7. Chavan, P., Fadnavis, S., Chakroborty, T., Sioris, C.E., Griessbach, S., and Müller, R., The outflow of Asian biomass burning carbonaceous aerosol into the upper troposphere and lower stratosphere in spring: Radiative effects seen in a global model, Atmos. Chem. Phys., 2021, vol. 21, pp. 14371–14384. https://doi.org/10.5194/acp-21-14371-2021

    Article  Google Scholar 

  8. Cheremisin, A.A., Photophoresis of aerosol particles with nonuniform gas–surface accommodation in the free molecular regime, J. Aerosol Sci., 2019, vol. 136, pp. 15–35.

    Article  Google Scholar 

  9. Chylek, P. and Wong, J., Effect of absorbing aerosols on global radiation budget, Geophys. Res. Lett., 1995, vol. 22, pp. 929–931.

    Article  Google Scholar 

  10. CWFIS. Canadian Wildland Fire Information System/National Wildland Fire Situation Report. https://cwfis. cfs.nrcan.gc.ca/report/graphs#gr6.

  11. Friberg, J., Martinsson, B.G., Andersson, S.M., Brenninkmeijer, C.A.M., Hermann, M., Van Velthoven, P.F.J., and Zahn, A., Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights, Tellus B: Chem. Phys. Meteorol., 2014, vol. 66, p. 23428. https://doi.org/10.3402/tellusb.v66.23428

    Article  Google Scholar 

  12. Friberg, J., Martinsson, B.G., Andersson, S.M., and Sandvik, O.S., Volcanic impact on the climate: The stratospheric aerosol load in the period 2006–2015, Atmos. Chem. Phys., 2018, vol. 18, pp. 11149–11169. https://doi.org/10.5194/acp-18-11149-2018

    Article  Google Scholar 

  13. Fromm, M., Peterson, D., and DiGirolamo, L., The primary convective pathway for observed wildfire emissions in the upper troposphere and lower stratosphere: A targeted reinterpretation, J. Geophys. Res.: Atmos., 2019, vol. 124, pp. 13.54–13.72. https://doi.org/10.1029/2019JD031006

  14. Grebennikov, V.S., Zubachev, D.S., Korshunov, V.A., Sakhibgareev, D.G., and Chernykh, I.A., Observations of stratospheric aerosol at Rosgidromet lidar stations after the eruption of the Raikoke Volcano in June 2019, Atmos. Oceanic Opt., 2019, vol. 33, no. 5, pp. 519–523.

    Article  Google Scholar 

  15. Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D., Depolarization and lidar ratios at 355, 532, and 1064 nm wildfire smoke, Atmos. Chem. Phys., 2018, vol. 18, pp. 11847–11861. https://doi.org/10.5194/acp-18-11847-2018

    Article  Google Scholar 

  16. Hansen, J., Sato, M., and Ruedy, R., Radiative forcing and climate response, J. Geophys. Res., 1997, vol. 102, pp. 6831–6864.

    Article  Google Scholar 

  17. Hansen, J., Sato, M., Ruedy, R., et al., Efficacy of climate forcings, J. Geophys. Res., 2005, vol. 110, p. D18104. https://doi.org/10.1029/2005JD005776

    Article  Google Scholar 

  18. Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J-A., Popovici, I.E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C., Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 2019, vol. 19, pp. 1173–1193. https://doi.org/10.5194/acp-19-1173-2019

    Article  Google Scholar 

  19. Hudson, P.K., Murphy, D.M., Cziczo, D.J., Thomson, D.S., de Gouw, J.A., Warneke, C., Holloway, J., Jost, H.-J., and Hübler, G., Biomass-burning particle measurements: Characteristic composition and chemical processing, J. Geophys. Res., 2004, vol. 109, p. 27. https://doi.org/10.1029/2003JD004398

    Article  Google Scholar 

  20. Ivanov, V.N., Zubachev, D.S., Korshunov, V.A., and Sakhibgareev, D.G., Network lidar AK-3 for sounding the middle atmosphere: structure, measurement methods, and results, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2020, no. 598, pp. 155–187.

  21. Khaykin, S.M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F., and Keckhut, P., Stratospheric smoke with unprecedentedly high backscatter observed by lidars above southern France, Geophys. Res. Lett., 2018, vol. 45, pp. 1639–1646. https://doi.org/10.1002/2017GL076763

    Article  Google Scholar 

  22. Khmelevtsov, S.S., Kaufman, Yu.G., Korshunov, V.A., Svetogorov, E.D., and Khmelevtsov, A.S., Laser sensing of atmospheric parameters at the Obninsk lidar station of the Taifun NPO, in Voprosy fiziki atmosfery, Sbornik statei (Problems of Atmospheric Physics: Collection of Papers), St. Petersburg: Gidrometeoizdat, 1998.

  23. Kloss, C., Sellitto, P., Legras, B., Vernier, J-P., Jegou, F., Ratnam, M.V., Kumar, B.S., Madhavan, B.L., and Berthet, G., Impact of the 2018 Ambae eruption on the global stratospheric aerosol layer and climate, J. Geophys. Res.: Atmos., 2020, vol. 125, no. 14, p. e2020JD032410. https://doi.org/10.1029/2020JD032410

  24. Korshunov, V.A., Background stratospheric aerosol and its radiation characteristics from data of lidar observations over Obninsk in 2014–2017, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2018, vol. 589, pp. 50–73.

    Google Scholar 

  25. Korshunov, V.A. and Zubachev, D.S., Characteristics of stratospheric aerosol from data of lidar measurements over Obninsk in 2012–2015, Atmos. Oceanic Opt., 2017, vol. 30, no. 3, pp. 226–233.

    Article  Google Scholar 

  26. Mullendore, G.L., Durran, D.R., and Holton, J.R., Cross-tropopause tracer transport in midlatitude convection, J. Geophys. Res., 2005, vol. 110, p. D06113. https://doi.org/10.1029/2004JD005059

    Article  Google Scholar 

  27. Murphy, D.M., Froyd, K.D., Schwarz, J.P., and Wilson, J.C., Observations of the chemical composition of stratospheric aerosol particles, Q. J. R. Meteorol. Soc., 2014, vol. 140, pp. 1269–1278. https://doi.org/10.1002/qj.2213

    Article  Google Scholar 

  28. Peterson, D.A., Campbell, J.R., Hyer, E.J., Fromm, M.D., Kablick, G.P. III, Cossuth, J.H., and DeLand, M.T., Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke, Clim. Atmos. Sci., 2018, vol. 1, p. 30. https://doi.org/10.1038/s41612-018-0039-3

    Article  Google Scholar 

  29. PyroCb over Siberia on 22 June 2013. http:// pyrocb.ssec. wisc.edu/archives/175.

  30. Ridley, D.A., Solomon, S., Barnes, J.E., Burlakov, V.D., Deshler, T., Dolgii, S.I., Herber, A.B., Nagai, T., Neely, R.R. III, Nevzorov, A.V., Ritter, C., Sakai, T., Santer, B.D., Sato, M., Schmidt, A., et al., Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 7763–7769. https://doi.org/10.1002/2014GL061541

    Article  Google Scholar 

  31. Rosenfeld, D., Liu, G., Yu, X., Zhu, Y., Dai, J., Xu, X., and Yue, Z., High-resolution (375 m) cloud microstructure as seen from the NPP/VIIRS satellite imager, Atmos. Chem. Phys., 2014, vol. 14, pp. 2479–2496. https://doi.org/10.5194/acp-14-2479-2014

    Article  Google Scholar 

  32. Schmidt, A., Mills, M.J., Ghan, S., Gregory, J.M., Allan, R.P., Andrews, T., Bardeen, C.G., Conley, A., Forster, P.M., Gettelman, A., Portmann, R.W., Solomon, S., and Toon, O.B., Volcanic radiative forcing from 1979 to 2015, J. Geophys. Res.: Atmos., 2018, vol. 123, pp. 12491–12508. https://doi.org/10.1029/2018JD028776

    Article  Google Scholar 

  33. Sitnov, S.A., Mokhov, I.I., Gorchakov, G.I., and Dzhola, A.V., Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies, Russ. Meteorol. Hydrol., 2016, vol. 42, no. 8, pp. 518–528.

    Article  Google Scholar 

  34. Wang, Z., Shishko, V.A., Konoshonkin, A.V., Kustova, N.V., Borovoi, A.G., Matvienko, G.G., Xie, C., Liu, D., and Wang, Y., The study of cirrus clouds with the polarization lidar in the South-East China (Hefei), Atmos. Oceanic Opt., 2016, vol. 30, no. 3, pp. 234–235. https://doi.org/10.1134/S1024856017030150

    Article  Google Scholar 

  35. Yu, P., Rosenlof, K.H., Liu, S., Telg, H., Troy, D., Thornberry, T.D., Rollins, A.W., Portmann, R.W., Baid, Z., Ray, E.A., Duan, Y., Pan, L.L., Toon, O.B., Bian, J., and Gao, R-H., Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone, Proc. Natl. Acad. Sci., 2017, vol. 114, pp. 6972–6977. https://doi.org/10.1073/pnas.1701170114

    Article  Google Scholar 

  36. Zuev, V.V., Burlakov, V.D., Nevzorov, A.V., Pravdin, V.L., Savelieva, E.S., and Gerasimov, V.V., 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia), Atmos. Chem. Phys., 2017, vol. 17, pp. 3067–3081. https://doi.org/10.5194/acp-17-3067-2017

    Article  Google Scholar 

  37. Zuev, V.V., Gerasimov, V.V., Nevzorov, A.V., and Savelieva, E.S., Lidar observations of pyrocumulonimbus smoke plumes in the UTLS over Tomsk (Western Siberia, Russia) from 2000 to 2017, Atmos. Chem. Phys., 2019, vol. 19, pp. 3341–3356. https://doi.org/10.5194/acp-19-3341-2019

    Article  Google Scholar 

Download references

Funding

The work was supported by Roshydromet, topic 3.2 “Monitoring the Global Climate and the Climate of the Russian Federation and Its Regions, Including the Arctic. Development and Modernization of Monitoring Technologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Korshunov.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Translated by E. Morozov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, V.A. Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning. Izv. Atmos. Ocean. Phys. 59 (Suppl 2), S191–S200 (2023). https://doi.org/10.1134/S0001433823140104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823140104

Keywords:

Navigation