Skip to main content
Log in

Atmospheric Greenhouse Gas Distributions: Satellite-Based Measurements

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A review of works of the last 20 years devoted to the development in our country and abroad of methods and means of measuring the concentration fields of long-lived carbon-containing greenhouse gases in the atmosphere—carbon dioxide CO2 and methane CH4—from satellites has been carried out. Physical and mathematical foundations for interpreting measurements from modern satellite spectrometers in the near-infrared and infrared spectral ranges are briefly reviewed. Information is provided on programs for the development of domestic and foreign satellite systems for monitoring the content of CO2 and CH4 in the atmosphere, as well as on ground-based observation networks, the data of which can be used for calibrating and validating satellite information products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Arshinov, M.Yu., Belan, B.D., Davydov, D.K., Krekov, G.M., Fofonov, A.V., Babchenko, S.V., Inoue, G., Machida, T., Maksutov, Sh., Sasakawa, M., and Shimoyama, K., Dynamics of vertical distribution of greenhouse gases in the atmosphere, Opt. Atmos. Okeana, 2012, vol. 25, no. 12, pp. 1051–1061.

    Google Scholar 

  2. Asmus, V.V., Dyaduchenko, V.N., Nosenko, Y.I., Polishchuk, G.M., and Selin, V.A., A highly elliptical orbit space system for hydrometeorological monitoring of the Arctic region, WMO Bull., 2007, vol. 56, no. 4.

  3. Boesch, H., Liu, Y., Tamminen, J., Yang, D., Palmer, P.I., Lindqvist, H., Cai, Z., Che, K., DiNoia, A., Feng, L., Hakkarainen, J., Ialongo, I., Kalaitzi, N., Karppinen, T., Kivi, R., et al., Monitoring greenhouse gases from space, Remote Sens., 2021, vol. 13, p. 2700. https://doi.org/10.3390/rs13142700

    Article  Google Scholar 

  4. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V., and Goede, A.P.H., SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 1999, vol. 56, pp. 127–150.

    Article  Google Scholar 

  5. Buchwitz, M., Rozanov, V.V., and Burrows, J.P., A near infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY/ENVISAT-1 nadir radiances, J. Geophys. Res., 2000, vol. 105, pp. 15231–15246.

    Article  Google Scholar 

  6. Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R., Boesch, H., Hasekamp, O., Aben, I., Bovensmann, H., Burrows, J.P., Butz, A., Chevallier, F., Dils, B., Frankenberg, C., Heymann, J., et al., Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set, Remote Sens. Environ., vol. 203, pp. 276–295.

  7. Chédin, A., Sounders, R., Hollingsworth, A., Scott, N.A., Saunders, R., Matricardi, M., Etcheto, J., Clerbaux, C., and Armante, R., The feasibility studies of monitoring CO2 from high resolution infrared sounders, J. Geophys. Res., 2003, vol. 108, no. D2, p. 4064, https://doi.org/ 001443.https://doi.org/10.1029/2001JD

  8. CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Draft Version September 9, 2018. A constellation architecture for monitoring carbon dioxide and methane from space. CEOS_AC-VC_ GHG_White_Paper_Version_1_20181009.pdf. https:// ceos.org/document_management/Meetings/SIT-Technical-Workshop/2018-SIT-Tech-Workshop/Documents/ CEOS_AC-VC_White_Paper_pre-TW_draft_20180910. pdf.

  9. Dlugokencky, E. and Tans, P., Trends in Atmospheric Carbon Dioxide, National Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), 2021. http://www.esrl.noaa.gov/gmd/ ccgg/trends/global.html.

  10. Durand, Y., Courrèges-Lacoste, G.B., Pachot, C., Boucher, L., Pasquet, A., Sierk, B., Bézy, J.-L., Meijer, Y., Fernandez, V., Lesschaeve, S., Spilling, D., Dussaux, A., Serre, D., and Hennepe, F., Copernicus CO2M mission: Status of the instrument suite for monitoring anthropogenic carbon dioxide emissions from space, in Proc. SPIE, Sensors, Systems, and Next-Generation Satellites XXV, 2021, vol. 11858, p. 118580B.

  11. GCOS, Systematic Observation Requirements for Satellite-Based Products for Climate: Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2011 Update), GCOS-154, Geneva: WMO, 2011.

  12. GCOS, The Global Observing System for Climate: Implementation Needs, GCOS-200, Geneva: WMO, 2016. https://library.wmo.int/doc_-num.php?explnum_id=3417.

  13. Guide to Instruments and Methods of Observation, vol. 4: Space-Based Observations, WMO, 2018, no. 8.

  14. IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, Pachauri, R.K. and Meyer, L.A., Eds., Geneva: IPCC, 2014.

    Google Scholar 

  15. Kiselev, A.A. and Karol’, I.L., S metanom po zhizni (With Methane in Life), St. Petersburg: Glavnaya geofizicheskaya observatoriya im. A.I. Voeikova, 2019.

  16. Kukharskii, A.V. and Uspenskii, A.B., Determination of tropospheric mean carbon dioxide concentration from satellite high spectral resolution IR-sounder data, Russ. Meteorol. Hydrol., 2009, vol. 34, no. 4, pp. 202–211.

    Article  Google Scholar 

  17. Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T., Thermal and near infra-red sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Opt., 2009, vol. 48, pp. 6716–6733. https://doi.org/10.1364/AO.48.006716

    Article  Google Scholar 

  18. Kuzovkin, V.V. and Semenov, S.M., Methane in the near-surface layer of the atmosphere: Current content, long-term trends and intra-annual variability, Fundam. Prikl. Klimatol., 2020, no. 3, pp. 5–21. https://doi.org/10.21513/2410-8758-2020-3-05-21

  19. Liang, A., Gong, W., Han, G., and Xian, C., Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON, Remote Sens., 2017, vol. 9, p. 1033. https://doi.org/10.3390/rs9101033

    Article  Google Scholar 

  20. Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., Van de Brugh, J., Schneider, A., Wu, L., Hase, F., Kivi, R., Wunch, D., Pollard, D.F., Shiomi, K., Deutscher, N.M., Velazco, V.A., Roehl, C.M., et al., Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements, Atmos. Meas. Tech., 2021, vol. 14, pp. 665–684. https://doi.org/10.5194/amt-14-665-2021

    Article  Google Scholar 

  21. Masiello, G., Serio, C., Venafra, S., Liuzzi, G., and Camy-Peyret, C., Four years of IASI CO2, CH4, N2O retrievals: Validation with in situ observations from the Mauna Loa station, Proc. SPIE, 2018, vol. 10786, Remote Sensing of Clouds and the Atmosphere XXIII, 107860G. https://doi.org/10.1117/12.2325569

  22. De Mazière, M., Thompson, A.M., Kurylo, M.J., Wild, J.D., Bernhard, G., Blumenstock, T., Braathen, G.O., Hannigan, J.W., Lambert, J.-C., Leblanc, T., McGee, T.J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P.C., et al., The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives, Atmos. Chem. Phys., 2018, vol. 18, pp. 4935–4964. https://doi.org/10.5194/acp-18-4935-2018

    Article  Google Scholar 

  23. Munro, R., CO2 Human Emissions 2020. D1.4 Stakeholder Report on the Requirements for Future Space-based Instruments to Deliver Products Suitable for CO2 Emissions Monitoring, 2020. https://www.che-project. eu/sites/default/files/2020-12/CHE-D1-4-V1-0.pdf.

  24. Nikitenko, A.A., Timofeev, Yu.M., Berezin, I.A., Virolainen, Ya.A., and Polyakov, A., The analysis of OCO-2 satellite measurements of CO2 in the vicinity of Russian cities, Atmos. Oceanic Opt., 2020, vol. 33, no. 7, pp. 650–655. https://doi.org/10.1134/S1024856020060111

    Article  Google Scholar 

  25. Noël, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Bovensmann, H., Burrows, J.P., Di Noia, A., Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N.M., Feist, D.G., Griffith, D.W.T., Hase, F., et al., XCO2 retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm, Atmos. Meas. Tech., 2021, vol. 14, pp. 3837–3869. https://doi.org/10.5194/amt-14-3837-2021

    Article  Google Scholar 

  26. Paris Agreement, United Nations, 2015. https://unfccc.int/ sites/default/files/russian_paris_agreement.pdf.

  27. Rayner, P.J. and O’Brien, D.M., The utility of remotely sensed CO2 concentration data in surface source inversions, Geophys. Res. Lett., 2001, vol. 28, pp. 175–178, https://doi.org/10.1029/2001GL013115

    Article  Google Scholar 

  28. Reuter, M., Buchwitz, M., Schneising, O., O’Dell, S., Richter, C.W., Bovensmann, H., and Burrows, J.P., Towards monitoring localized CO2 emissions from space: Co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S-5P satellites, Atmos. Chem. Phys., 2019, vol. 19, pp. 9371–9383. https://www.atmos-chem-phys.net/19/9371/2019/.

    Article  Google Scholar 

  29. Rublev, A.N. and Uspenskii, A.B., Estimation of carbon dioxide concentration in the troposphere according to SCIAMACHY spectrometer measurements under cloudy conditions, Issled. Zemli Kosmosa, 2006, no. 6, pp. 31–41.

  30. Schneising, O., Buchwitz, M., Burrows, J.P., Bovensmann, H., Reuter, M., Notholt, J., Macatangay, R., and Warneke, T., Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite. Part 1: Carbon dioxide, Atmos. Chem. Phys., 2008, vol. 8, pp. 3827–3853.

    Article  Google Scholar 

  31. Semenov, S.M., The greenhouse effect: Discovery, development of the concept, and role in the formation of global climate and its anthropogenic changes, Fundam. Prikl. Klimatol., 2015, no. 2, pp. 103–126.

  32. Semenov, S.M. and Kuzovkin, V.V., Present-day content of carbon dioxide in the near-surface layer of the Earth’s atmosphere: Long-term trends and intra-annual variability, Fundam. Prikl. Klimatol., 2019, no. 4, pp. 101–119. https://doi.org/10.21513/0207-2564-2019-4-101-119

  33. Sun, X., Abshire, J., Ramanathan, A., Kawa, S.R., and Mao, J., Retrieval algorithm for column CO2 mixing ratio measurements from a multi-wavelength IPDA lidar, Atmos. Meas. Tech., 2021, vol. 14, pp. 3909–3922. https://doi.org/10.5194/amt-14-3909-2021

    Article  Google Scholar 

  34. Timofeev, Yu.M. and Vasil’ev, A.V., Teoreticheskie osnovy atmosfernoi optiki (Theoretical Foundations of Atmospheric Optics), St. Petersburg: Nauka, 2003.

  35. Turquety, S., Hadji-Lazaro, J., Clerbaux, C., Hauglustaine, D.A., Clough, S.A., Casse, V., Schlussel, P., and Megie, G., Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer, J. Geophys. Res., 2004, vol. 109, p. D21301. https://doi.org/10.1029/2004JD004821

    Article  Google Scholar 

  36. Uspenskii, A.B., Kukharskii, A.V., and Rublev, A.N., Detecting tropospheric CO2 variations from data of a high spectral resolution satellite IR sounder, Issled. Zemli Kosmosa, 2006, no. 4, pp. 42–51.

  37. Uspenskii, A.B., Kukharskii, A.V., Romanov, S.V., and Rublev, A.N., Monitoring the carbon dioxide mixing ratio in the troposphere and the methane total column over Siberia according to the data of the AIRS and IASI IR Sounders, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1097–1103.

    Article  Google Scholar 

  38. WMO Greenhouse Gas Bulletin (GHG Bulletin): The state of greenhouse gases in the atmosphere based on global observations through 2019, WMO CHG Bull., 2020, no. 16. https://library.wmo.int/doc_num.php?explnum_id= 10460.

  39. World Data Centre for Greenhouse Gases GAW/WMO. https://gaw.kishou.go.jp. Accessed March 8, 2020.

  40. Wunch, D., Toon, G.C., Blavier, J.F.L., Washenfelder, R.A., Notholt, J., Connor, B.J., Griffith, D.W.T., Sherlock, V., and Wennberg, P.O., The total carbon column observing network, Philos. Trans. R. Soc. A: Math., Phys., Eng. Sci., 2011, vol. 369, pp. 2087–2112.

    Google Scholar 

  41. Wunch, D., Wennberg, P.O., Osterman, G., and Fisher, B., Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON, Atmos. Meas. Tech., 2017, vol. 10, pp. 2209–2238.

    Article  Google Scholar 

  42. Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshche-pkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G.C., Wunch, D., et al., Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas. Tech., 2013, pp. 1533–1547.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Uspensky.

Ethics declarations

CONFLICT OF INTERESTS

The author of this work declares that he has no conflicts of interest.

CONSENT TO PARTICIPATE

Informed consent was obtained from all individual participants included in the study.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspensky, A.B. Atmospheric Greenhouse Gas Distributions: Satellite-Based Measurements. Izv. Atmos. Ocean. Phys. 59 (Suppl 2), S232–S241 (2023). https://doi.org/10.1134/S0001433823140141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823140141

Keywords:

Navigation