Skip to main content
Log in

Global genome and transcription-coupled nucleotide excision repair pathway in prokaryotes

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

In all cells—from bacteria to humans—nucleotide excision repair (NER) is a highly conserved, versatile DNA repair pathway that is responsible for the removal of a wide variety of DNA helix-distorting lesions arising from both endogenous and exogenous sources. In many organisms including bacteria, fungi, animals, and plants, NER occurs through two sub-pathways: the global genome NER (GG-NER) pathway and the transcription-coupled NER (TC-NER) pathway. Although essential factors and basic steps involved in NER have been identified, mechanisms and stages of their assembly process are not well understood. In this review, we summarize recent literature about protein interaction networks that manifest during initial stages of bacterial NER pathway while highlighting some of the key functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Adebali O, Chiou YY, Hu J, et al. 2017 Genome-wide transcription-coupled repair in Escherichia coli is mediated by the Mfd translocase. Proc. Natl. Acad. Sci. USA 114 E2116–E2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharati BK, Gowder M, Zheng F, et al. 2022 Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 604 152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron PR, Kushner SR and Grossman L 1985 Involvement of helicase II (uvrD gene product) and DNA polymerase I in excision mediated by the uvrABC protein complex. Proc. Natl. Acad. Sci. USA 82 4925–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case BC, Hartley S, Osuga M, et al. 2019 The ATPase mechanism of UvrA2 reveals the distinct roles of proximal and distal ATPase sites in nucleotide excision repair. Nucleic Acids Res. 47 4136–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N and Walker GC 2017 Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 58 235–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epshtein V, Kamarthapu V, McGary K, et al. 2014 UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505 372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedberg E 2003 DNA damage and repair. Nature 421 436–440

    Article  PubMed  Google Scholar 

  • Ghodke H, Ho HN and van Oijen AM 2020 Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair. Nat. Commun. 11 1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeijmakers JH 2001 Genome maintenance mechanisms for preventing cancer. Nature 411 366–374

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Selby CP, Adar S, Adebali O and Sancar A 2017 Molecular mechanisms and genomic maps of DNA excision repair in Escherichia coli and humans. J. Biol. Chem. 292 15588–15597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain I, van Houten B, Thomas DC, et al. 1985 Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease. Proc. Natl. Acad. Sci. USA 82 6774–6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaciuk M, Swuec P, Gaur V, et al. 2020 A combined structural and biochemical approach reveals translocation and stalling of UvrB on the DNA lesion as a mechanism of damage verification in bacterial nucleotide excision repair. DNA Repair 85 102746

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Gupta R and Sen R 2019 Rho-dependent transcription termination in bacteria recycles RNA polymerases stalled at DNA lesions. Nat. Commun. 10 1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kad NM, Wang H, Kennedy GG, et al. 2010 Collaborative dynamic DNA scanning by nucleotide excision repair proteins investigated by single-molecule imaging of quantum-dot-labeled proteins. Mol. Cell 37 702–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamarthapu V, Epshtein V, Benjamin B, et al. 2016 ppGpp couples transcription to DNA repair in E. coli. Science 352 993–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JY, Llewellyn E, Chen J, et al. 2021 Structural basis for transcription complex disruption by the Mfd translocase. eLife 10 e62117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisker C, Kuper J and Van Houten B 2013 Prokaryotic nucleotide excision repair. Cold Spring Harb. Perspect. Biol. 5 a012591

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraithong T, Hartley S, Jeruzalmi D, et al. 2021 A peek inside the machines of bacterial nucleotide excision repair. Int. J. Mol. Sci. 22 952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreuzer KN 2013 DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb. Perspect. Biol. 5 a012674

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Sung RJ and Verdine GL 2019 Mechanism of DNA lesion homing and recognition by the Uvr nucleotide excision repair system. Research 2019 5641746

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsey-Boltz LA and Sancar A 2021 The transcription-repair coupling factor Mfd prevents and promotes mutagenesis in a context-dependent manner. Front. Mol. Biosci. 8 668290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machius M, Henry L, Palnitkar M, et al. 1999 Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus Proc. Natl. Acad. Sci. USA 96 11717–11722

    Article  CAS  Google Scholar 

  • Martinez B, Bharati BK, Epshtein V, et al. 2022 Pervasive Transcription-coupled DNA repair in E. coli. Nat Commun. 13 1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moolenaar GF, Franken KL, Dijkstra DM, et al. 1995 The C-terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3’-incision. J. Biol. Chem. 270 30508–30515

    Article  CAS  PubMed  Google Scholar 

  • Moolenaar GF, Moorman C and Goosen N 2000 Role of the Escherichia coli nucleotide excision repair proteins in DNA replication. J Bacteriol. 182 5706–5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita R, Nakane S, Shimada A, et al. 2010 Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J. Nucleic Acids 14 179594

    Google Scholar 

  • Myles GM, Hearst JE and Sancar A 1991 Site-specific mutagenesis of conserved residues within Walker A and B sequences of Escherichia coli UvrA protein. Biochemistry 30 3824–3834

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa N, Sugahara M, Masui R, et al. 1999 Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair. J. Biochem. 126 986–990

    Article  CAS  PubMed  Google Scholar 

  • Pakotiprapha D, Liu Y, Verdine GL, et al. 2009 A structural model for the damage-sensing complex in bacterial nucleotide excision repair. J. Biol. Chem. 284 12837–12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakotiprapha D, Samuels M, Shen K, et al. 2012 Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat. Struct. Mol. Biol. 19 291–298

    Article  CAS  PubMed  Google Scholar 

  • Paudel BP, Xu ZQ, Jergic S, et al. 2022 Mechanism of transcription modulation by the transcription-repair coupling factor. Nucleic Acids Res. 50 5688–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi F, Khanduja JS, Bortoluzzi A, et al. 2011 The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res. 39 7316–7328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sale JE, Lehmann AR and Woodgate R 2012 Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13 141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seck A, De Bonis S, Stelter M, et al. 2023 Structural and functional insights into the activation of the dual incision activity of UvrC, a key player in bacterial NER. Nucleic Acids Res. 51 2931–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby CP 2017 Mfd protein and transcription-repair coupling in Escherichia coli. Photochem. Photobiol. 93 280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby CP and Sancar A 1993 Molecular mechanism of transcription-repair coupling. Science 260 53–58

    Article  CAS  PubMed  Google Scholar 

  • Silva RMB, Grodick MA and Barton JK 2020 UvrC coordinates an O2-sensitive [4Fe4S] cofactor. J. Am. Chem. Soc. 142 10964–10977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracy M, Jaciuk M, Uphoff S, et al. 2016 Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nat. Commun. 7 12568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur M and Muniyappa K 2019 Nucleotide excision repair pathway in mycobacteria; in Mycobacterium tuberculosis: Molecular infection biology, pathogenesis, diagnostics and new interventions (Eds) Hasnain S, Ehtesham N and Grover S (Singapore: Springer)

    Google Scholar 

  • Thakur M and Muniyappa K 2020 Deciphering the essentiality and function of SxSx motif in Mycobacterium tuberculosis UvrB. Biochimie 170 94–105

    Article  CAS  PubMed  Google Scholar 

  • Thakur M and Muniyappa K 2023 Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis 138 102284

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Kumar MBJ and Muniyappa K 2016 Mycobacterium tuberculosis UvrB Is a robust DNA-stimulated ATPase that also possesses structure-specific ATP-dependent DNA helicase activity. Biochemistry 55 5865–5883

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Badugu S and Muniyappa K 2020 UvrA and UvrC subunits of the Mycobacterium tuberculosis UvrABC excinuclease interact independently of UvrB and DNA. FEBS Lett. 594 851–863

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Agarwal A and Muniyappa K 2021 The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J. 288 1179–1200

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Parulekar RS, Barale SS, et al. 2022 Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function. Biophys. J. 121 3103–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theis K, Chen PJ, Skorvaga M, et al. 1999 Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 18 6899–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmins J, Gordon E, Caria S, et al. 2009 Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs. Structure 17 547–558

    Article  CAS  PubMed  Google Scholar 

  • Truglio JJ, Karakas E, Rhau B, et al. 2006 Structural basis for DNA recognition and processing by UvrB. Nat. Struct. Mol. Biol. 13 360–364

    Article  CAS  PubMed  Google Scholar 

  • Van Houten B, Croteau DL, Della Vecchia MJ, et al. 2005 ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat. Res. 577 92–117

    Article  PubMed  Google Scholar 

  • Verhoeven EE, van Kesteren M, Moolenaar GF, et al. 2000 Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J. Biol. Chem. 275 5120–5123

    Article  CAS  PubMed  Google Scholar 

  • Wagner K, Moolenaar GF and Goosen N 2010 Role of the two ATPase domains of Escherichia coli UvrA in binding non-bulky DNA lesions and interaction with UvrB. DNA Repair 9 1176–1186

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MT conceptualized the manuscript, performed the literature search and wrote the manuscript along with KM. MT made the figure. MT and KM have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Manoj Thakur.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any financial relationships that could be construed as a potential conflict of interest.

Additional information

Corresponding editor: Sanjeev Galande

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Muniyappa, K. Global genome and transcription-coupled nucleotide excision repair pathway in prokaryotes. J Biosci 48, 56 (2023). https://doi.org/10.1007/s12038-023-00378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00378-8

Keywords

Navigation