Skip to main content

Advertisement

Log in

Lipid Metabolism, Methylation Aberrant, and Osteoporosis: A Multi-omics Study Based on Mendelian Randomization

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Background

Observational studies have shown a causal association between dyslipidemia and osteoporosis, but the genetic causation and complete mechanism of which are uncertain. The disadvantage of previous observational studies is that they are susceptible to confounding factors and bias, that makes it difficult to infer a causal link between those two diseases. Abnormal epigenetic modifications, represented by DNA methylation, are important causes of many diseases. However, there are no studies showing a bridging role for methylation modifications in blood lipid metabolism and osteoporosis.

Methods

SNPs for lipid profile (Blood VLDL cholesterol (VLDL-C), blood LDL cholesterol (LDL-C), blood HDL cholesterol (HDL-C), blood triglycerides (TG), diagnosed pure hypercholesterolaemia, blood apolipoprotein B (Apo B), blood apolipoprotein A1(Apo A1)), and bone mineral density (BMD) in different body parts (Heel BMD, lumbar BMD, whole-body BMD, femoral neck BMD) were obtained from large meta-analyses of genome-wide association studies as instrumental variables for two-sample Mendelian randomization. Assessment of the genetic effects of lipid profile-associated methylation sites and bone mineral density was carried out using the summary-data-based Mendelian randomization (SMR) method.

Results

Two-sample Mendelian randomization showed that there was a negative causal association between hypercholesterolaemia and heel BMD (p = 0.0103, OR = 0.4590), and total body BMD (p = 0.0002, OR = 0.2826). LDL-C had a negative causal association with heel BMD (p = 8.68E-05, OR = 0.9586). VLDL-C had a negative causal association with heel BMD (p = 0.035, OR = 0.9484), lumbar BMD (p = 0.0316, OR = 0.9356), and total body BMD (p = 0.0035, OR = 0.9484). HDL-C had a negative causal association with heel BMD (p = 1.25E-05, OR = 0.9548), lumbar BMD (p = 0.0129, OR = 0.9358), and total body BMD (p = 0.0399, OR = 0.9644). Apo B had a negative causal association with heel BMD (p = 0.0001, OR = 0.9647). Apo A1 had a negative causal association with heel BMD (p = 0.0132, OR = 0.9746) and lumbar BMD (p = 0.0058, OR = 0.9261). The p-values of all positive results corrected by the FDR method remained significant and sensitivity analysis showed that there was no horizontal pleiotropy in the results despite the heterogeneity in some results. SMR identified 3 methylation sites associated with lipid profiles in the presence of genetic effects on BMD: cg15707428(GREB1), cg16000331(SREBF2), cg14364472(NOTCH1).

Conclusion

Our study provides insights into the potential causal links and co-pathogenesis between dyslipidemia and osteoporosis. The genetic effects of dyslipidaemia on osteoporosis may be related to certain aberrant methylation genetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

GWAS summary data are from IEU OpenGWAS project (mrcieu.ac.uk). Data for all individuals have been uploaded to Tables 1–10 of Supplementary material.

Abbreviations

GWAS:

Genome-wide association study

BMD:

Bone mineral density

MR:

Mendelian randomization

Total.Body.BMD:

Whole-body bone mineral density

Heel.BMD:

Heel bone mineral density

Lumbar.BMD:

Lumbar bone mineral density

SMR:

Summary-data-based mendelian randomization

LDL-C:

Blood low-density lipoprotein cholesterol

VLDL-C:

Blood very low-density lipoprotein cholesterol

HDL-C:

Blood high-density lipoprotein cholesterol

TC:

Total cholesterol

TG:

Triglycerides

SNPs:

Single nucleotide polymorphism

IVW:

Inverse-variance weighted

GLGC:

Global Lipids Genetics Consortium

GEFOs:

GEnetic Factors for OSteoporosis Consortium

IV:

Instrumental variable

Apo B:

Apolipoprotein B

Apo A1:

Apolipoprotein A1

meQTL:

Methylation quantitative trait loci

MAF:

Minor allele frequency

References

  1. Srivastava M, Deal C (2002) Osteoporosis in elderly: prevention and treatment. Clin Geriatr Med 18(3):529–555. https://doi.org/10.1016/s0749-0690(02)00022-8

    Article  PubMed  Google Scholar 

  2. Zhang Q, Zhou J, Wang Q, Lu C, Xu Y, Cao H, Xie X, Wu X, Li J, Chen D (2020) Association between bone mineral density and lipid profile in Chinese women. Clin Interv Aging 15(15):1649–1664. https://doi.org/10.2147/CIA.S266722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tan A, Shu J, Huang H, Shao H, Yang J (2023) The correlation between the serum LDL-C/Apo B ratio and lumbar bone mineral density in young adults. BMC Musculoskelet Disord 24(1):213. https://doi.org/10.1186/s12891-023-06325-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ambrogini E, Que X, Wang S, Yamaguchi F, Weinstein RS, Tsimikas S, Manolagas SC, Witztum JL, Jilka RL (2018) Oxidation-specific epitopes restrain bone formation. Nat Commun 9(1):2193. https://doi.org/10.1038/s41467-018-04047-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao H, Li Y, Zhang M, Qi L, Tang Y (2021) Blood lipid levels in patients with osteopenia and osteoporosis:a systematic review and meta-analysis. J Bone Miner Metab 39(3):510–520. https://doi.org/10.1007/s00774-020-01189-9

    Article  CAS  PubMed  Google Scholar 

  6. Chen YY, Wang WW, Yang L, Chen WW, Zhang HX (2018) Association between lipid profiles and osteoporosis in postmenopausal women: a meta-analysis. Eur Rev Med Pharmacol Sci 22(1):1–9. https://doi.org/10.26355/eurrev_201801_14093

    Article  PubMed  Google Scholar 

  7. Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian Randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27(11):3253–3265. https://doi.org/10.1681/ASN.2016010098

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zheng HTOF, Forgetta V, Hsu YH, et.al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015 526(7571):112–7. doi: https://doi.org/10.1038/nature14878. Epub 2015 Sep 14. PMID: 26367794; PMCID: PMC4755714.) and a meta-analysis (Medina-Gomez C, Kemp JP, Trajanoska K, et.al. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet. 2018 Jan 4;102(1):88–102. doi:https://doi.org/10.1016/j.ajhg.2017.12.005. PMID: 29304378; PMCID: PMC5777980

  9. Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, Holmes MV (2020) Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PloS Med 17(3):e1003062. https://doi.org/10.1371/journal.pmed.1003062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20(8):350–358. https://doi.org/10.1016/j.tig.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Jones AC, Irvin MR, Claas SA, Arnett DK (2021) Lipid phenotypes and DNA methylation: a review of the literature. Curr Atheroscler Rep 23(11):71. https://doi.org/10.1007/s11883-021-00965-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dekkers KF, van Iterson M, Slieker RC et al (2016) Blood lipids influence DNA methylation in circulating cells. Genome Biol 17(1):138. https://doi.org/10.1186/s13059-016-1000-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng HF, Forgetta V, Hsu YH et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–7. https://doi.org/10.1038/nature14878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Medina-Gomez C, Kemp JP, Trajanoska K et al (2018) Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet 102(1):88–102. https://doi.org/10.1016/j.ajhg.2017.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richardson TG, Sanderson E, Palmer TM et al (2020) Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PloS Med 17(3):e1003062. https://doi.org/10.1371/journal.pmed.1003062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willer CJ, Schmidt EM, Sengupta S et al (2013) Global lipids genetics consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283. https://doi.org/10.1038/ng.2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ong JS, MacGregor S (2019) Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet Epidemiol 43(6):609–616. https://doi.org/10.1002/gepi.22207

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40(7):597–608

    Article  PubMed  PubMed Central  Google Scholar 

  19. McRae AF, Marioni RE, Shah S et al (2018) Identification of 55,000 Replicated DNA Methylation QTL. Sci Rep 8:17605. https://doi.org/10.1038/s41598-018-35871-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu Y, Zeng J, Zhang F et al (2018) Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun 9:918. https://doi.org/10.1038/s41467-018-03371-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sayols-Baixeras S, Subirana I, Lluis-Ganella C et al (2016) Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach the REGICOR study. Hum Mol Genet 25(20):4556–4565. https://doi.org/10.1093/hmg/ddw285.Erratum.In:HumMolGenet.2019Apr15;28(8):1402.PMID:28173150;PMCID:PMC6284258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu Z, Zhang F, Hu H et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481–487. https://doi.org/10.1038/ng.3538

    Article  CAS  PubMed  Google Scholar 

  23. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 30(7):e34408. https://doi.org/10.7554/eLife.34408

    Article  Google Scholar 

  24. Yuan S, Larsson S (2020) Causal associations of iron status with gout and rheumatoid arthritis, but not with inflammatory bowel disease. Clin Nutr 39(10):3119–3124. https://doi.org/10.1016/j.clnu.2020.01.019

    Article  CAS  PubMed  Google Scholar 

  25. Hemani G, Zheng J, Be Elsworth et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife. 7:e34408. https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang W, Xiao J, Ji J, Chen L (2021) Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study. Elife 6(10):e73873. https://doi.org/10.7554/eLife.73873

    Article  Google Scholar 

  27. Ghorabi S, Shab-Bidar S, Sadeghi O, Nasiri M, Khatibi SR, Djafarian K (2019) Lipid profile and risk of bone fracture: a systematic review and meta-analysis of observational studies. Endocr Res 44(4):168–184. https://doi.org/10.1080/07435800.2019.1625057

    Article  CAS  PubMed  Google Scholar 

  28. Ghadiri-Anari A, Mortezaii-Shoroki Z, Modarresi M, Dehghan A (2016) Association of lipid profile with bone mineral density in postmenopausal women in Yazd province. Int J Reprod Biomed 14(9):597–602

    Article  PubMed  PubMed Central  Google Scholar 

  29. Go JH, Song YM, Park JH, Park JY, Choi YH (2012) Association between serum cholesterol level and bone mineral density at lumbar spine and femur neck in postmenopausal korean women. Korean J Fam Med 33(3):166–73. https://doi.org/10.4082/kjfm.2012.33.3.166

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qi T, Wu Y, Zeng J et al (2018) Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun 9:2282. https://doi.org/10.1038/s41467-018-04558-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hemani G, Bowden J, Davey SG (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 27(R2):R195–R208. https://doi.org/10.1093/hmg/ddy163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD (2017) Recent developments in mendelian randomization studies. Curr Epidemiol Rep 4(4):330–345. https://doi.org/10.1007/s40471-017-0128-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miserez AR, Cao G, Probst LC, Hobbs HH (1997) Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Genomics 40(1):31–40. https://doi.org/10.1006/geno.1996.4525

    Article  CAS  PubMed  Google Scholar 

  34. García-García AB, Martínez-Hervás S, Vernia S, Ivorra C, Pulido I, Martín-Escudero JC, Casado M, Carretero J, Real JT, Chaves FJ (2022) A very rare variant in SREBF2, a possible cause of hypercholesterolemia and increased glycemic levels. Biomedicines 10(5):1178. https://doi.org/10.3390/biomedicines10051178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Golic M, Stojanovska V, Bendix I, Wehner A, Herse F, Haase N, Kräker K, Fischer C, Alenina N, Bader M, Schütte T, Schuchardt M, van der Giet M, Henrich W, Muller DN, Felderhoff-Müser U, Scherjon S, Plösch T, Dechend R (2018) Diabetes mellitus in pregnancy leads to growth restriction and epigenetic modification of the Srebf2 gene in rat fetuses. Hypertension 71(5):911–920. https://doi.org/10.1161/HYPERTENSIONAHA.117.10782

    Article  CAS  PubMed  Google Scholar 

  36. Madduma Hewage S, Au-Yeung KKW, Prashar S, Wijerathne CUB, Karmin O, Siow YL (2022) Lingonberry improves hepatic lipid metabolism by targeting notch1 signaling. Antioxidants (Basel) 11(3):472. https://doi.org/10.3390/antiox11030472

    Article  CAS  PubMed  Google Scholar 

  37. Ibrahim DA, Elsebai EA, Fayed A, Abdelrahman AE (2022) Prognostic value of NOTCH1 and OCT4 in gastric carcinoma. Indian J Pathol Microbiol 65(2):328–335. https://doi.org/10.4103/IJPM.IJPM_871_20

    Article  PubMed  Google Scholar 

  38. Lu L, Wang Z, Zhang H, Liu T, Fang H (2022) Drynaria fortunei improves lipid profiles of elderly patients with postmenopausal osteoporosis via regulation of Notch1-NLRP3 inflammasome-mediated inflammation. Gynecol Endocrinol 38(2):176–180. https://doi.org/10.1080/09513590.2021.2015760

    Article  CAS  PubMed  Google Scholar 

  39. Hegarty KG, Drummond FJ, Daly M, Shanahan F, Molloy MG (2018) GREB1 genetic variants are associated with bone mineral density in Caucasians. J Bone Miner Metab 36(2):189–199. https://doi.org/10.1007/s00774-017-0823-x

    Article  CAS  PubMed  Google Scholar 

  40. Cheng M, Michalski S, Kommagani R (2018) Role for growth regulation by estrogen in breast cancer 1 (GREB1) in hormone-dependent cancers. Int J Mol Sci 19(9):2543. https://doi.org/10.3390/ijms19092543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He P, Meng XH, Zhang X, Lin X, Zhang Q, Jiang RL, Schiller MR, Deng FY, Deng HW (2020) Identifying pleiotropic SNPs associated with femoral neck and heel bone mineral density. Front Genet 22(11):772. https://doi.org/10.3389/fgene.2020.00772

    Article  CAS  Google Scholar 

  42. Qin C, Diaz-Gallo LM, Tang B, Wang Y, Nguyen TD, Harder A, Lu Y, Padyukov L, Askling J, Hägg S (2023) Repurposing antidiabetic drugs for rheumatoid arthritis: results from a two-sample Mendelian randomization study. Eur J Epidemiol 38(7):809–819. https://doi.org/10.1007/s10654-023-01000-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the researchers who provided publicly open GWAS summary data.

Funding

This work was supported by ShanXi Applied Basic Research Programme (Nos.201901D111409), Key Research and Development (R&D) Projects of Shanxi Province (No.201803D31134) and Taiyuan Science and Technology Programme (No.202201). All of the funding were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

ZZ was responsible for the methodological design and data collation and visualisation of the figures. YD was responsible for the writing of the draft and grammatical touch-ups. JH provided the conceptualisation, revision and review of the draft and the financial support for the study. ZZ and YD contributed equally to the article.

Corresponding author

Correspondence to JianZhong Huo.

Ethics declarations

Conflict of interest

Zhaoliang Zhang, Yuchen Duan and Jianzhong Huo declare that they have no conflict of interest.

Ethical Approval

This study was conducted in accordance with the Declaration of Helsinki. All cited GWAS and other data have been approved by the relevant review boards.

Human and Animal Rights and Informed Consent

All Human and Animal Rights and Informed Consent statements can be found from the original GWAS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 571 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Duan, Y. & Huo, J. Lipid Metabolism, Methylation Aberrant, and Osteoporosis: A Multi-omics Study Based on Mendelian Randomization. Calcif Tissue Int 114, 147–156 (2024). https://doi.org/10.1007/s00223-023-01160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01160-6

Keywords

Navigation