Skip to main content
Log in

On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A general method is presented for constructing a nonlinear canonical transformation, which makes it possible to introduce local variables in a neighborhood of periodic motions of an autonomous Hamiltonian system with two degrees of freedom. This method can be used for investigating the behavior of the Hamiltonian system in the vicinity of its periodic trajectories. In particular, it can be applied to solve the problem of orbital stability of periodic motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The solution (2.2) can be stable in the sense of Lyapunov in the special case (the so-called isochronic case), when the period of the periodic solution does not depend on initial conditions. For instance, such a special case takes place for periodic motions of the harmonic oscillator.

References

  1. Poincaré, H., Les méthodes nouvelles de la mécanique céleste: T. 2. Méthodes de Newcomb, Glyden, Lindstedt et Bohlin, Paris: Gauthier-Villars, 1892.

    Google Scholar 

  2. Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Providence, R.I.: AMS, 1966.

    MATH  Google Scholar 

  3. Markeev, A. P., Stability of Plane Oscillations and Rotations of a Satellite in a Circular Orbit, Cosmic Research, 1975, vol. 13, no. 3, pp. 285–298; see also: Kosmicheskie Issledovaniya, 1975, vol. 13, no. 3, pp. 322-336.

    Google Scholar 

  4. Markeev, A. P. and Bardin, B. S., On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit, Celest. Mech. Dynam. Astronom., 2003, vol. 85, no. 1, pp. 51–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. Markeyev, A. P., The Stability of the Plane Motions of a Rigid Body in the Kovalevskaya Case, J. Appl. Math. Mech., 2001, vol. 65, no. 1, pp. 47–54; see also: Prikl. Mat. Mekh., 2001, vol. 65, no. 1, pp. 51-58.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardin, B. S., On the Orbital Stability of Pendulum-Like Motions of a Rigid Body in the Bobylev – Steklov Case, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 702–714.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bardin, B. S., Rudenko, T. V., and Savin, A. A., On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev – Steklov Case, Regul. Cahotic Dyn., 2012, vol. 17, no. 6, pp. 533–546.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardin, B. S. and Savin, A. A., On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point, Regul. Chaotic Dyn., 2012, vol. 17, no. 3–4, pp. 243–257.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardin, B. S. and Savin, A. A., The Stability of the Plane Periodic Motions of a Symmetrical Rigid Body with a Fixed Point, J. Appl. Math. Mech., 2013, vol. 77, no. 6, pp. 578–587; see also: Prikl. Mat. Mekh., 2013, vol. 77, no. 6, pp. 806-821.

    Article  MathSciNet  MATH  Google Scholar 

  10. Markeyev, A. P., An Algorithm for Normalizing Hamiltonian Systems in the Problem of the Orbital Stability of Periodic Motions, J. Appl. Math. Mech., 2002, vol. 66, no. 6, pp. 889–896; see also: Prikl. Mat. Mekh., 2002, vol. 66, no. 6, pp. 929-938.

    Article  MathSciNet  Google Scholar 

  11. Bardin, B. S., On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body, Russian J. Nonlinear Dyn., 2020, vol. 16, no. 4, pp. 581–594.

    MathSciNet  MATH  Google Scholar 

  12. Bardin, B. S. and Chekina, E. A., On the Orbital Stability of Pendulum-Like Oscillations of a Heavy Rigid Body with a Fixed Point in the Bobylev – Steklov Case, Russian J. Nonlinear Dyn., 2021, vol. 17, no. 4, pp. 453–464.

    MathSciNet  MATH  Google Scholar 

  13. Bardin, B. S., Chekina, E. A., and Chekin, A. M., On the Orbital Stability of Pendulum Oscillations of a Dynamically Symmetric Satellite, Russian J. Nonlinear Dyn., 2022, vol. 18, no. 4, pp. 589–607.

    MathSciNet  MATH  Google Scholar 

  14. Malkin, I. G., Theory of Stability of Motion, Washington, D.C.: U.S. Atomic Energy Commission, 1952.

    MATH  Google Scholar 

  15. Arnol’d, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85–191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6(114), pp. 91-192.

    Article  MathSciNet  MATH  Google Scholar 

  16. Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

    Book  MATH  Google Scholar 

  17. Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., vol. 8, New York: Springer, 1972.

    MATH  Google Scholar 

  18. Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, Izhevsk: R&C Dynamics, Institute of Computer Science, 2009 (Russian).

    Google Scholar 

  19. Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Moscow: Nauka, 1978 (Russian).

    MATH  Google Scholar 

  20. Markeyev, A. P., A Constructive Algorithm for the Normalization of a Periodic Hamiltonian, J. Appl. Math. Mech., 2005, vol. 69, no. 3, pp. 323–337; see also: Prikl. Mat. Mekh., 2005, vol. 69, no. 3, pp. 355-371.

    Article  MathSciNet  Google Scholar 

  21. Moser, J. K., Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., vol. 81, Providence, R.I.: AMS, 1968.

    MATH  Google Scholar 

  22. Ivanov, A. P. and Sokol’skii, A. G., On the Stability of a Nonautonomous Hamiltonian System under a Parametric Resonance of Essential Type, J. Appl. Math. Mech., 1980, vol. 44, no. 6, pp. 687–691; see also: Prikl. Mat. Mekh., 1980, vol. 44, no. 6, pp. 963-970.

    Article  MathSciNet  Google Scholar 

  23. Ivanov, A. P. and Sokol’skii, A. G., On the Stability of a Nonautonomous Hamiltonian System under Second-Order Resonance, J. Appl. Math. Mech., 1980, vol. 44, no. 5, pp. 574–581; see also: Prikl. Mat. Mekh., 1980, vol. 44, no. 5, pp. 811-822.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the grant of the Russian Science Foundation (project 22-21-00729) and was carried out at the Moscow Aviation Institute (National Research University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Bardin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

34D20, 37J40, 70K30, 70K45, 37N05

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardin, B.S. On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom. Regul. Chaot. Dyn. 28, 878–887 (2023). https://doi.org/10.1134/S1560354723060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723060059

Keywords

Navigation