Skip to main content
Log in

Quantum dense coding and teleportation based on two coupled quantum dot molecules influenced by intrinsic decoherence, tunneling rates, and Coulomb coupling interaction

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate two quantum communication protocols of dense coding and teleportation based on two coupled quantum dot molecules under intrinsic decoherence, tunneling rates, and Coulomb coupling interaction. In addition, due to the importance of estimating the initial phase, we monitor the initial quantum phase of the teleportation, which may have information encoded in it, using a family of quantum statistical speeds, especially quantum Fisher information and Hilbert–Schmidt speed. Moreover, we compare the results between single and two-qubit teleportations, such that the superiority of single-qubit teleportation in the current model can be obvious. The assumed scheme’s various parameters help us improve quantum dense coding, teleportation, and phase estimation in the current model. Furthermore, we reveal that the tools discussed in this paper can all provide witnessing non-Markovian dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

LOCC:

Local ope rations and classical communication

QFI:

Quantum Fisher information

HSS:

Hilbert–Schmidt speed

CR:

Cramér–Rao

QSS:

Quantum statistical speed

SQ:

Single-qubit teleportation

TQ:

Two-qubit teleportation

References

  1. Z. Shadman, H. Kampermann, C. Macchiavello, D. Bruss, New J. Phys. 12, 073042 (2010)

    Article  ADS  Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  3. S. Pirandola, U.L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani et al., Adv. Opt. Photonics 12, 1012 (2020)

    Article  ADS  Google Scholar 

  4. H.-W. Wang, C.-W. Tsai, J. Lin, Y.-Y. Huang, C.-W. Yang, Mathematics 10, 1241 (2022)

    Article  Google Scholar 

  5. Y. Zhu, L. Mao, H. Hu, Y. Wang, Y. Guo, Mathematics 10, 4450 (2022)

    Article  Google Scholar 

  6. S. Haddadi, M. Hadipour, S. Haseli, A.U. Rahman, A. Czerwinski, Mathematics 11, 1407 (2023)

    Article  Google Scholar 

  7. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Barenco, A.K. Ekert, J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  9. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  10. T. Hiroshima, J. Phys. A Math. Gen. 34, 6907 (2001)

    Article  ADS  Google Scholar 

  11. D. Bruß, G.M. D’Ariano, M. Lewenstein, C. Macchiavello, A. Sen, U. Sen et al., Phys. Rev. Lett. 93, 210501 (2004)

    Article  ADS  Google Scholar 

  12. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  15. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S.L. Braunstein, Nat. Photonics 9, 641 (2015)

    Article  ADS  Google Scholar 

  16. L. Ali, M. Ikram, T. Abbas, I. Ahmad, Quantum Inf. Process. 21, 55 (2022)

    Article  ADS  Google Scholar 

  17. N. Zidan, A. ur Rahman, S. Haddadi, Laser Phys. Lett. 20, 025204 (2023)

    Article  ADS  Google Scholar 

  18. H.R. Jahromi, Phys. Lett. A 424, 127850 (2022)

    Article  Google Scholar 

  19. M.-L. Hu, J. Phys. B At. Mol. Opt. Phys. 44, 025502 (2011)

    Article  ADS  Google Scholar 

  20. M.-L. Hu, Quantum Inf. Process. 12, 229 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Kumar, S. Haddadi, M.R. Pourkarimi, B.K. Behera, P.K. Panigrahi, Sci. Rep. 10, 13608 (2020)

    Article  ADS  Google Scholar 

  22. J. Lee, M. Kim, Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  23. S. Oh, S. Lee, H.-W. Lee, Phys. Rev. A 66, 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Jung, M.-R. Hwang, Y.H. Ju, M.-S. Kim, S.-K. Yoo, H. Kim, D. Park, J.-W. Son, S. Tamaryan, S.-K. Cha, Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  25. D.B. Rao, P. Panigrahi, C. Mitra, Phys. Rev. A 78, 022336 (2008)

    Article  ADS  Google Scholar 

  26. Y. Yeo, Z.-W. Kho, L. Wang, Europhys. Lett. 86, 40009 (2009)

    Article  ADS  Google Scholar 

  27. S. Quek, Z. Li, Y. Yeo, Phys. Rev. A 81, 024302 (2010)

    Article  ADS  Google Scholar 

  28. J.-K. Li, K. Xu, G.-F. Zhang, Chin. Phys. B 30, 110302 (2021)

    Article  ADS  Google Scholar 

  29. S. Haddadi, M.-L. Hu, Y. Khedif, H. Dolatkhah, M.R. Pourkarimi, M. Daoud, Results Phys. 32, 105041 (2022)

    Article  Google Scholar 

  30. Y.-H. Sun, Y.-X. Xie, Results Phys. 37, 105526 (2022)

    Article  Google Scholar 

  31. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    Google Scholar 

  32. A. Rivas, S.F. Huelga, Open Quantum Systems, vol. 10 (Springer, Berlin, 2012)

    Book  Google Scholar 

  33. X. Cai, Y. Zheng et al., Phys. Rev. A 95, 052104 (2017)

    Article  ADS  Google Scholar 

  34. X. Cai, Y. Zheng, J. Chem. Phys. 149 (2018)

  35. X. Cai, Sci. Rep. 10, 88 (2020)

    Article  ADS  Google Scholar 

  36. A. Czerwinski, Mathematics 10, 3932 (2022)

    Article  Google Scholar 

  37. H.-P. Breuer, E.-M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  39. H. Chen, T. Han, M. Chen, J. Ren, X. Cai, X. Meng, Y. Peng, in Photonics, vol. 10 (MDPI, 2023) p. 134

  40. B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  41. W. Zhou, J.J. Coleman, Curr. Opin. Solid State Mater. Sci. 20, 352 (2016)

    Article  ADS  Google Scholar 

  42. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, New York, 2016)

    Book  Google Scholar 

  43. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)

    Google Scholar 

  44. B.W. Lovett, J.H. Reina, A. Nazir, G.A.D. Briggs, Phys. Rev. B 68, 205319 (2003)

    Article  ADS  Google Scholar 

  45. F. Basso Basset, F. Salusti, L. Schweickert, M.B. Rota, D. Tedeschi, S.F. Covre da Silva, E. Roccia, V. Zwiller, K.D. Jöns, A. Rastelli et al., NPJ Quantum Inf. 7, 7 (2021)

    Article  ADS  Google Scholar 

  46. C. Schimpf, M. Reindl, D. Huber, B. Lehner, S.F. Covre Da Silva, S. Manna, M. Vyvlecka, P. Walther, A. Rastelli, Sci. Adv. 7, eabe8905 (2021)

    Article  ADS  Google Scholar 

  47. L. Chotorlishvili, A. Gudyma, J. Wätzel, A. Ernst, J. Berakdar, Phys. Rev. B 100, 174413 (2019)

    Article  ADS  Google Scholar 

  48. F.B. Basset, M. Valeri, J. Neuwirth, E. Polino, M.B. Rota, D. Poderini, C. Pardo, G. Rodari, E. Roccia, S.C. da Silva et al., Quantum Sci. Technol. 8, 025002 (2023)

    Article  ADS  Google Scholar 

  49. D.A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, T. Heindel, Adv. Quantum Technol. 5, 2100116 (2022)

    Article  Google Scholar 

  50. M. Urdampilleta, A. Chatterjee, C.C. Lo, T. Kobayashi, J. Mansir, S. Barraud, A.C. Betz, S. Rogge, M.F. Gonzalez-Zalba, J.J. Morton, Phys. Rev. X 5, 031024 (2015)

    Google Scholar 

  51. S.E. Economou, J.I. Climente, A. Badolato, A.S. Bracker, D. Gammon, M.F. Doty, Phys. Rev. B 86, 085319 (2012)

    Article  ADS  Google Scholar 

  52. J. Gorman, D. Hasko, D. Williams, Phys. Rev. Lett. 95, 090502 (2005)

    Article  ADS  Google Scholar 

  53. Z. Shi, C. Simmons, J. Prance, J.K. Gamble, T.S. Koh, Y.-P. Shim, X. Hu, D. Savage, M. Lagally, M. Eriksson et al., Phys. Rev. Lett. 108, 140503 (2012)

    Article  ADS  Google Scholar 

  54. F. Fanchini, L. Castelano, A. Caldeira, New J. Phys. 12, 073009 (2010)

    Article  ADS  Google Scholar 

  55. P. Oliveira, L. Sanz, Ann. Phys. 356, 244 (2015)

    Article  ADS  Google Scholar 

  56. B. Szafran, Phys. Rev. B 101, 075306 (2020)

    Article  ADS  Google Scholar 

  57. X.-K. Qin, Europhys. Lett. 114, 37006 (2016)

    Article  ADS  Google Scholar 

  58. F. Souza, P. Oliveira, L. Sanz, Phys. Rev. A 100, 042309 (2019)

    Article  ADS  Google Scholar 

  59. S. Bugu, F. Ozaydin, T. Ferrus, T. Kodera, Sci. Rep. 10, 3481 (2020)

    Article  ADS  Google Scholar 

  60. K. Li, F.-Z. Kong, M. Yang, F. Ozaydin, Q. Yang, Z.-L. Cao, Quantum Inf. Process. 15, 3137 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  61. Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  62. N.I. Mohammed, H.M. Abdelsalam, S. Almalki, M. Abd-Rabbou, S. Abdel-Khalek, E. Khalil, Alex. Eng. J. 69, 521 (2023)

    Article  Google Scholar 

  63. X. Lu, H. Lin, arXiv preprint arXiv:2210.00231 (2022)

  64. M.G. Paris, Int. J. Quantum Inf. 7, 125 (2009)

    Article  Google Scholar 

  65. J. Liu, H. Yuan, X.-M. Lu, X. Wang, J. Phys. A Math. Theor. 53, 023001 (2020)

    Article  ADS  Google Scholar 

  66. M. Gessner, A. Smerzi, Phys. Rev. A 97, 022109 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  67. H.R. Jahromi, R.L. Franco, Sci. Rep. 11 ( 2021)

  68. P. Hauke, M. Heyl, L. Tagliacozzo, P. Zoller, Nat. Phys. 12, 778 (2016)

    Article  Google Scholar 

  69. V. Erol, F. Ozaydin, A.A. Altintas, Sci. Rep. 4, 5422 (2014)

    Article  ADS  Google Scholar 

  70. J.B. Campbell, R.H. Wynne, Introduction to Remote Sensing (Guilford Press, New York, 2011)

    Google Scholar 

  71. A.S. Holevo, IEEE Trans. Inf. Theory 44, 269 (1998)

    Article  Google Scholar 

  72. B. Schumacher, M.D. Westmoreland, Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  73. S. Haddadi, M. Ghominejad, A. Akhound, M.R. Pourkarimi, Laser Phys. Lett. 17, 095205 (2020)

    Article  ADS  Google Scholar 

  74. M.Y. Abd-Rabbou, E.M. Khalil, Ann. Phys. 534, 2200204 (2022)

    Article  Google Scholar 

  75. G. Bowen, S. Bose, Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  76. M. Jafarzadeh, H. Rangani Jahromi, M. Amniat-Talab, Proc. R. Soc. A 476, 20200378 (2020)

    Article  ADS  Google Scholar 

  77. M. Nakahara, T. Ohmi, Quantum Computing: from Linear Algebra to Physical Realizations (CRC Press, Boca Raton, 2008)

    Book  Google Scholar 

  78. C.W. Helstrom, J. Stat. Phys. 1, 231 (1969)

    Article  ADS  Google Scholar 

  79. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  80. S.A. Haine, Phys. Rev. Lett. 116, 230404 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  81. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  82. H.R. Jahromi, K. Mahdavipour, M.K. Shadfar, R.L. Franco, Phys. Rev. A 102, 022221 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  83. G. Milburn, Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  84. B.-G. Englert, N. Metwally, Appl. Phys. B 72, 35 (2001)

    Article  ADS  Google Scholar 

  85. I. De Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017)

    Article  ADS  Google Scholar 

  86. A. Fujiwara, Phys. Rev. A 63, 042304 (2001)

    Article  ADS  Google Scholar 

  87. J. Suzuki, Phys. Rev. A 94, 042306 (2016)

    Article  ADS  Google Scholar 

  88. R. Laurenza, C. Lupo, G. Spedalieri, S.L. Braunstein, S. Pirandola, Quantum Meas. Quantum Metrol. 5, 1 (2018)

    Article  ADS  Google Scholar 

  89. X.-M. Lu, X. Wang, C. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  90. H.R. Jahromi, R.L. Franco, Quantum Inf. Process. 21 ( 2022)

  91. P. Yin, Y. Takeuchi, W.-H. Zhang, Z.-Q. Yin, Y. Matsuzaki, X.-X. Peng, X.-Y. Xu, J.-S. Xu, J.-S. Tang, Z.-Q. Zhou et al., Phys. Rev. Appl. 14, 014065 (2020)

    Article  ADS  Google Scholar 

  92. C.T. Fancher, D.R. Scherer, M.C.S. John, B.L.S. Marlow, IEEE Trans. Quantum Eng. 2, 1 (2021)

    Article  Google Scholar 

  93. R.A. Bowell, M.J. Brandsema, B.M. Ahmed, R.M. Narayanan, S.W. Howell, J.M. Dilger, in Radar Sensor Technology XXIV, vol. 11408 (SPIE, 2020), p. 137–150

  94. M.J. Brandsema, R.M. Narayanan, M. Lanzagorta, in Radar Sensor Technology XXIV, vol. 11408 (SPIE, 2020), p. 113–126

  95. A. Sebastianelli, D.A. Zaidenberg, D. Spiller, B. Le Saux, S.L. Ullo, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 565 (2021)

    Article  ADS  Google Scholar 

  96. G.Y. Slepyan, S. Vlasenko, D. Mogilevtsev, Adv. Quantum Technol. 3, 1900120 (2020)

    Article  Google Scholar 

  97. H. Okane, H. Hakoshima, Y. Takeuchi, Y. Seki, Y. Matsuzaki, Phys. Rev. A 104, 062610 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of Urmia University.

Author information

Authors and Affiliations

Authors

Contributions

Interpretations and comparison of results and writing of the article were done by SMH. All authors reviewed the manuscript.

Corresponding author

Correspondence to Seyed Mohammad Hosseiny.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseiny, S.M. Quantum dense coding and teleportation based on two coupled quantum dot molecules influenced by intrinsic decoherence, tunneling rates, and Coulomb coupling interaction. Appl. Phys. B 130, 8 (2024). https://doi.org/10.1007/s00340-023-08130-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08130-8

Navigation