Skip to main content
Log in

Long noncoding RNA MAFG-AS1 enhances proliferation, invasion, and epithelial–mesenchymal transition of melanoma cells through promoting KIT expression by competitively binding to miR-331-3p

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Objective

Melanoma is a malignant skin cancer. This paper is dedicated to investigate the disease mechanism in regard to the axis of long noncoding RNA MAFG antisense 1 (MAFG-AS1)/microRNA (miR)-331-3p/KIT.

Methods

Levels of MAFG-AS1, miR-331-3p and KIT were analyzed in melanoma patients' cancer tissues and melanocytic nevi patients’ skin tissues. The correlation between prognosis of melanoma patients with MAFG-AS1 expression was observed. Loss- and gain-function tests were implemented to observe alternatives of cell biological activities.

Results

Melanoma patients’ cancer tissues expressed higher MAFG-AS1 and KIT and lower miR-331-3p. Patients with high MAFG-AS1 expression exhibited a poorer prognosis. After down-regulating MAFG-AS1 in A375 cells, cell proliferation, invasiveness, epithelial–mesenchymal transition (EMT) decreased, and apoptosis increased. Up-regulating MAFG-AS1 caused the opposite consequences. miR-331-3p inhibition or KIT overexpression eliminated the blockade of proliferation, invasion, and EMT caused by MAFG-AS1 silencing.

Conclusion

MAFG-AS1 competitively binds to miR-331-3p to elevate KIT expression, thereby enhancing the aggressiveness of melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  • Bai Y, Ren C, Wang B, Xue J, Li F, Liu J, Yang L (2021) LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther. https://doi.org/10.1038/s41417-021-00306-8

    Article  PubMed  Google Scholar 

  • Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Tykodi S, Thompson J (2009) Treatment of metastatic melanoma: an overview. Oncology 23(6):488–496

    PubMed  Google Scholar 

  • Bielskienė K, Bagdonienė L, Mozūraitienė J, Kazbarienė B, Janulionis E (2015) E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina 51(1):1–9

    Article  PubMed  Google Scholar 

  • Chin L, Garraway L, Fisher D (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Yang X, Zhang L, Zhao Y, Yan W (2018) LncRNA MAFG-AS1 promotes the progression of colorectal cancer by sponging miR-147b and activation of NDUFA4. Biochem Biophys Res Commun 506(1):251–258

    Article  CAS  PubMed  Google Scholar 

  • Dang L, Wang Y, Shi C, Liao M, Sun Z, Fang S (2020) A potential tumor suppressor gene named mir-508-5p inhibited the proliferation and invasion of human melanoma cells by targeting KIT. Technol Cancer Res Treat 19:1533033820951801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Flynn R, Chang H (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14(6):752–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haass N, Schumacher U (2014) Melanoma never says die. Exp Dermatol 23(7):471–472

    Article  PubMed  Google Scholar 

  • Han YD, Qian X, Xu T, Shi Y (2022) viaCarcinoma-associated fibroblasts release microRNA-331–3p containing extracellular vesicles to exacerbate the development of pancreatic cancer the SCARA5-FAK axis. Cancer Biol Ther 23(1):378–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Xu Q, Wang X (2019) Long noncoding RNA DSCAM-AS1 is associated with poor clinical prognosis and contributes to melanoma development by sponging miR-136. Eur Rev Med Pharmacol Sci 23(7):2888–2897

    PubMed  Google Scholar 

  • Jia Y, Wang J, Liu Y, Li B, Guo H, Zang A (2019) LncRNA MAFG-AS1 facilitates the migration and invasion of NSCLC cell via sponging miR-339-5p from MMP15. Cell Biol Int 43(4):384–393

    Article  CAS  PubMed  Google Scholar 

  • Kellner J, Wallace C, Liu B, Li Z (2019) Definition of a multiple myeloma progenitor population in mice driven by enforced expression of XBP1s. JCI Insight. https://doi.org/10.1172/jci.insight.124698

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Kong F, Yang D, Yang H, Wang C, Cong R, Ma X (2021) lncRNA MIR210HG promotes the progression of endometrial cancer by sponging miR-337-3p/137 via the HMGA2-TGF-β/Wnt pathway. Mol Ther Nucleic Acids 24:905–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastroianni J, Stickel N, Andrlova H, Hanke K, Melchinger W, Duquesne S, Schmidt D, Falk M, Andrieux G, Pfeifer D, Dierbach H, Schmitt-Graeff A, Meiss F, Boerries M, Zeiser R (2019) miR-146a controls immune response in the melanoma microenvironment. Can Res 79(1):183–195

    Article  CAS  Google Scholar 

  • Mattick J (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2(11):986–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting C, Oliver P, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Linbo L, Xiaomei Z, Hui P (2020) Circ_0002770, acting as a competitive endogenous RNA, promotes proliferation and invasion by targeting miR-331-3p in melanoma. Cell Death Dis 11(4):264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinck-Junior J, Torricelli C, Gomez G, Oliveira C, Moraes A, Lourenço G, Lima C (2019) Influence of functional variants Asp312Asn and Lys751Gln of Xeroderma Pigmentosum Group D (XPD) and Glutathione S-transferase Mu 1 (GSTM1) and Theta 1 (GSTT1) genes on cutaneous melanoma susceptibility and prognosis. Exp Dermatol 28(5):631–635

    Article  CAS  PubMed  Google Scholar 

  • Ross C, Kaushik S, Valdes-Rodriguez R, Anvekar R (2018) MicroRNAs in cutaneous melanoma: role as diagnostic and prognostic biomarkers. J Cell Physiol 233(7):5133–5141

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Miller K, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30

    Article  PubMed  Google Scholar 

  • Stankov K, Popovic S, Mikov M (2014) C-KIT signaling in cancer treatment. Curr Pharm Des 20(17):2849–2880

    Article  CAS  PubMed  Google Scholar 

  • Teng G, Wang J, Chen Y, Jiang K, Chen M (2021) MiR-15b weakens proliferation and enhances apoptosis of melanoma cells through targeting ABCG2 signaling pathway. Panminerva Med. https://doi.org/10.23736/S0031-0808.21.04415-3

    Article  PubMed  Google Scholar 

  • Tsao H, Chin L, Garraway L, Fisher D (2012) Melanoma: from mutations to medicine. Genes Dev 26(11):1131–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Mou L, Chai H, Wang F, Yin Y, Zhang X (2017) Long non-coding RNA HNF1A-AS1 promotes hepatocellular carcinoma cell proliferation by repressing NKD1 and P21 expression. Biomed Pharmacother 89:926–932

    Article  CAS  PubMed  Google Scholar 

  • Witten L, Cheng C, Slack F (2019) miR-155 drives oncogenesis by promoting and cooperating with mutations in the c-Kit oncogene. Oncogene 38(12):2151–2161

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Zhou Y, Han H, Li P, Wei W, Lin N (2019) lncRNA NEAT1 facilitates melanoma cell proliferation, migration, and invasion via regulating miR-495-3p and E2F3. J Cell Physiol 234(11):19592–19601

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Liu J, Xiang L, Zhao K, He D, Zeng Q, Zhang Q, Xie D, Deng M, Zhu Y, Zhang Y, Liu Y, Bo H, Liu X, Chen X, Gong L, Bao Y, Hu Y, Cheng Y, Deng L, Zhu R, Xing X, Zhou M, Xiong W, Zhou Y, Zhou J, Li X, Cao K (2020) MAFG-AS1 promotes tumor progression via regulation of the HuR/PTBP1 axis in bladder urothelial carcinoma. Clin Transl Med 10(8):e241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Guo B, Liu X, Tao K (2021) miR-34a inhibits melanoma growth by targeting ZEB1. Aging. https://doi.org/10.18632/aging.203114

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wu W, Wu M, Ding J (2019) Long noncoding RNA ADPGK-AS1 promotes cell proliferation, migration, and EMT process through regulating miR-3196/OTX1 axis in breast cancer. In vitro cellular & developmental biology. Animal 55(7):522–532

    CAS  Google Scholar 

  • Yao B, Zhu S, Wei XY, Chen MK, Feng YK, Li ZM, Xu XY, Zhang YW, Wang Y, Zhou JW, Tang NY, Ji CJ, Jiang P, Zhao SC, Qin C, Feng NH (2022) The circSPON2/miR-331–3p axis regulates PRMT5, an epigenetic regulator of CAMK2N1 transcription and prostate cancer progression. Mol Cancer 21(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Li J, Yan X, Bian X (2021) LncRNA MAFG-AS1 suppresses the maturation of miR-34a to promote glioblastoma cell proliferation. Cancer Manag Res 13:3493–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, He Y, Yang S, Hu J, Zhang Q, Chen W, Xu H, Zhang H, Zhong S, Zhao J, Tang J (2018) The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci Rep. https://doi.org/10.1042/BSR20180772

  • Zhou W, Wang H, Zhang J, Dai H, Yao Z, Zheng Z, Meng-Yan S, Wu K (2020) NEAT1/miR-200b-3p/SMAD2 axis promotes progression of melanoma. Aging 12(22):22759–22775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jiang JC, Guo SH (2021) Hsa_circ_0004712 downregulation attenuates ovarian cancer malignant development by targeting the miR-331–3p/FZD4 pathway. J Ovarian Res 14(1):118. https://doi.org/10.1186/s13048-021-00859-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, He G, Wang Y, Hu Y, Zhang Z, Qian X, Wang Y (2019) Long intergenic noncoding RNA 00707 promotes colorectal cancer cell proliferation and metastasis by sponging miR-206. Onco Targets Ther 12:4331–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou B, Zhu W, Liu H, Wang S, Zhu H (2018) Identification and functional evaluation of miR-4633-5p as a biomarker and tumor suppressor in metastatic melanoma. Cellular Physiol Biochem 49(4):1364–1379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Zongjiang Yao and Peiwu Li designed the research study. ZY, PL and HL performed the research. HL provided help and advice. Hong Liu analyzed the data. ZY and PL wrote the manuscript. HL reviewed and edited the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Liu.

Ethics declarations

Conflict of interest

Zongjiang Yao declares that he has no conflict of interest. Peiwu Li declares that he has no conflict of interest. Hong Liu declares that he has no conflict of interest.

Ethical statement

All experimental procedures conformed with institutional guidelines, the experiment was often approved by the Ethics Committee of Lanzhou University Second Hospital (LZ20160728), and all patients participating in this study provided written informed consent in accordance with the “Helsinki Declaration”.

Informed consent

Written informed consent was obtained from each subject.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13273_2023_409_MOESM1_ESM.tif

Supplementary file 1 (TIF 6823 KB)—Figure S1 MAFG-AS1 induces proliferation and metastasis of melanoma cells. A. Transfection efficacy of MAFG-AS1 in A375 cells; B-C. Proliferation of A375 cells; D. Invasion of A375 cells; E. Apoptosis of A375 cells; F. E-cadherin, N-cadherin, vimentin and MMP2/9 mRNA expression in A375 cells. Three experimental repetitions; measurement data were shown in the form of mean ± standard deviation; * P < 0.05 vs. the pcDNA3.1 group.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Li, P. & Liu, H. Long noncoding RNA MAFG-AS1 enhances proliferation, invasion, and epithelial–mesenchymal transition of melanoma cells through promoting KIT expression by competitively binding to miR-331-3p. Mol. Cell. Toxicol. (2023). https://doi.org/10.1007/s13273-023-00409-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-023-00409-3

Keywords

Navigation