Skip to main content
Log in

The Effects of the Hydrogen Sulfide Donor GYY4137 on the Proteasome Pool of Colorectal Cancer Cells

  • ROLE OF GASEOUS TRANSMITTERS NITRIC OXIDE AND HYDROGEN SULFIDE IN CELL REDOX REGULATION
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Cancer cells are characterized by an increased level of metabolism and are highly dependent on the correct functioning of the processes that ensure homeostasis. Reactive sulfur species (RSS) are important molecular modulators of metabolic processes in both healthy and tumor cells. The effect of RSS and, in particular, H2S, on key cellular systems, including the ubiquitin–proteasome system (UPS), which provides the destruction of most intracellular proteins, has been shown. The main components of the UPS are proteasomes, multisubunit protein complexes, within which proteolysis occurs. At the same time, data on the effect of H2S directly on the pool of proteasomes in tumor cells are insufficient. Here, we studied the effect of incubation of SW620B8-mCherry colorectal adenocarcinoma cells expressing a fluorescently labeled proteasome subunit with 50, 100, and 200 µM of the hydrogen sulfide donor GYY4137. The effect of the substance on the proteasome pool was assessed 6, 24, 48, and 72 h after administration. It was shown that the chymotrypsin-like and caspase-like proteasome activity decreases in cells incubated with 200 µM of the GYY4137 for 24 h. This coincided with an increase in the expression of proteasome subunit genes. In lysates of cells incubated with 200 µM GYY4137 for 48 h an increase in the content of the constitutive β5 subunit was observed and the activity of proteasomes leveled off. Following prolonged incubation with GYY4137 (72h), an increase in the expression levels of some proteasome genes was also observed, although this did not have a significant effect on the activity and subunit composition of proteasomes. Thus, the obtained data indicate the modulation of proteasome activity by the hydrogen sulfide donor and the effect of GYY4137 on transcription and translation of proteasome genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kimura H. 2014. Hydrogen sulfide and polysulfides as biological mediators. Molecules. 19, 16146‒16157.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sen N. 2017. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol. 429, 543‒561.

    Article  CAS  PubMed  Google Scholar 

  3. Paul B.D., Snyder S.H., Kashfi K. 2021. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol. 38, 101772.

    Article  CAS  PubMed  Google Scholar 

  4. Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H.D., Huber R. 1997. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature. 386, 463‒471.

    Article  CAS  PubMed  Google Scholar 

  5. Abi Habib J., Lesenfants J., Vigneron N., Van den Eynde B.J. 2022. Functional differences between proteasome subtypes. Cells. 11, 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrington D.A., Gregerson D.S. 2012. Immunoproteasomes: Structure, function, and antigen presentation. Progr. Mol. Biol. Transl. Sci. 109, 75‒112.

    Article  CAS  Google Scholar 

  7. Pickering A.M., Linder R.A., Zhang H., Forman H.J., Davies K.J. 2012. Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J. Biol. Chem. 287, 10021‒10031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koike S., Ogasawara Y., Shibuya N., Kimura H., Ishii K. 2013. Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett. 587, 3548‒3555.

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu Y., Nicholson C.K., Lambert J.P., Barr L.A., Kuek N., Herszenhaut D., Tan L., Murohara T., Hansen J.M., Husain A., Naqvi N., Calvert J.W. 2016. Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ. Heart Fail. 9, e002368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burov A., Funikov S., Vagapova E., Dalina A., Rezvykh A., Shyrokova E., Lebedev T., Grigorieva E., Popenko V., Leonova O., Spasskaya D., Spirin P., Prassolov V., Karpov V., Morozov A. 2021. A cell-based platform for the investigation of immunoproteasome subunit β5i expression and biology of β5i-containing proteasomes. Cells. 10, 3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morozov A.V., Burov A.V., Astakhova T.M., Spasskaya D.S., Margulis B.A., Karpov V.L. 2019. Dynamics of the functional activity and expression of proteasome subunits during cellular adaptation to heat shock. Mol. Biol. (Moscow). 53, 571‒579. https://doi.org/10.1134/S0026898419040086

    Article  CAS  Google Scholar 

  12. Morozov A.V., Burov A.V., Funikov S.Yu., Teterina E.V., Astakhova T.M., Erokhov P.A., Ustyugov A.A., Karpov V.L. 2023. Changes in the activity and content of individual forms of proteasomes in samples of the cerebral cortex during pathology development in 5xFAD mice. Mol. Biol. (Moscow). 57 (5), In press.

  13. Morozov A., Astakhova T., Erokhov P., Karpov V. 2022. The ATP/Mg2+ balance affects the degradation of short fluorogenic substrates by the 20S proteasome. Methods Protocols. 5, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L., Fox B., Keeble J., Salto-Tellez M., Winyard P.G., Wood M.E., Moore P.K., Whiteman M. 2013. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J. Cell. Mol. Med. 17 (3), 365‒376. https://doi.org/10.1111/jcmm.12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li L., Whiteman M., Guan Y.Y., Neo K.L., Cheng Y., Lee S.W., Zhao Y., Baskar R., Tan C.H., Moore P.K. 2008. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): New insights into the biology of hydrogen sulfide. Circulation. 117 (18), 2351‒2360. https://doi.org/10.1161/CIRCULATIONAHA.107.753467

    Article  CAS  PubMed  Google Scholar 

  16. Wu Z., Peng H., Du Q., Lin W., Liu Y. 2015. GYY4137, a hydrogen sulfide‑releasing molecule, inhibits the inflammatory response by suppressing the activation of nuclear factor‑kappa B and mitogen‑activated protein kinases in Coxsackie virus B3‑infected rat cardiomyocytes. Mol. Med. Rep. 11 (3), 1837‒1844. https://doi.org/10.3892/mmr.2014.2901

    Article  CAS  PubMed  Google Scholar 

  17. Powell C.R., Dillon K.M., Matson J.B. 2018. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol. 149, 110‒123.

    Article  CAS  PubMed  Google Scholar 

  18. Kors S., Geijtenbeek K., Reits E., Schipper-Krom S. 2019. Regulation of proteasome activity by (post-)transcriptional mechanisms. Front. Mol. Biosci. 6, 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., Barrow R.K., Yang G., Wang R., Snyder S.H. 2009. H2S signals through protein S-sulfhydration. Sci Signal. 10, 2(96), ra72. https://doi.org/10.1126/scisignal.2000464..

  20. Zhang D., Du J., Tang C., Huang Y., Jin H. 2017. H2S-induced sulfhydration: Biological function and detection methodology. Front. Pharmacol. 8, 608.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaya H.E.K., Radhakrishnan S.K. 2021. Trash talk: mammalian proteasome regulation at the transcriptional level. Trends Genet. 37, 160‒173.

    Article  Google Scholar 

  22. King A.L., Polhemus D.J., Bhushan S., Otsuka H., Kondo K., Nicholson C.K., Bradley J.M., Islam K.N., Calvert J.W., Tao Y.X., Dugas T.R., Kelley E.E., Elrod J.W., Huang P.L, Wang R., Lefer D. 2014. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc. Natl. Acad. Sci. U. S. A. 111, 3182‒3187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kotamraju S., Matalon S., Matsunaga T., Shang T., Hickman-Davis J.M., Kalyanaraman B. 2006. Upregulation of immunoproteasomes by nitric oxide: Potential antioxidative mechanism in endothelial cells. Free Radical Biol. Med. 40, 1034‒1044.

    Article  CAS  Google Scholar 

  24. Sen N., Paul B.D., Gadalla M.M., Mustafa A.K., Sen T., Xu R., Kim S., Snyder S.H. 2012. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell. 45, 13‒24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kimura H. 2000. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun. 267, 129‒133.

    Article  CAS  PubMed  Google Scholar 

  26. Huang H., Wang H., Figueiredo-Pereira M.E. 2013. Regulating the ubiquitin/proteasome pathway via cAMP-signaling: Neuroprotective potential. Cell Biochem. Biophys. 67, 55‒66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work received financial support from the Russian Science Foundation (grant no. 17-74-30030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Morozov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work was carried out without involving human participants or animals as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorieva, E.V., Astakhova, T.M., Burov, A.V. et al. The Effects of the Hydrogen Sulfide Donor GYY4137 on the Proteasome Pool of Colorectal Cancer Cells. Mol Biol 57, 941–950 (2023). https://doi.org/10.1134/S0026893323060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323060079

Keywords:

Navigation