Skip to main content
Log in

Abstract

This paper investigates the hitting properties of a system of generalized fractional kinetic equations driven by Gaussian noise that is fractional in time and either white or colored in space. The considered model encompasses various examples such as the stochastic heat equation and the stochastic biharmonic heat equation. Under relatively general conditions, we derive the mean square modulus of continuity and explore certain second order properties of the solution. These are then utilized to deduce lower and upper bounds for probabilities that the path process hits bounded Borel sets in terms of the \(\mathfrak {g}_q\)-capacity and \(g_q\)-Hausdorff measure, respectively, which reveal the critical dimension for hitting points. Furthermore, by introducing the harmonizable representation of the solution and utilizing it to construct a family of approximating random fields which have certain smoothness properties, we prove that all points are polar in the critical dimension. This provides a compelling evidence supporting the conjecture raised in Hinojosa-Calleja and Sanz-Solé (Stoch Part Differ Equ Anal Comput 10(3):735–756, 2022. https://doi.org/10.1007/s40072-021-00234-6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Angulo, J.M., Anh, V.V., McVinish, R., Ruiz-Medina, M.D.: Fractional kinetic equations driven by Gaussian or infinitely divisible noise. Adv. Appl. Probab. 37(2), 366–392 (2005). https://doi.org/10.1239/aap/1118858630

    Article  MathSciNet  MATH  Google Scholar 

  2. Angulo, J.M., Ruiz-Medina, M.D., Anh, V.V., Grecksch, W.: Fractional diffusion and fractional heat equation. Adv. Appl. Probab. 32(4), 1077–1099 (2000). https://doi.org/10.1239/aap/1013540349

    Article  MathSciNet  MATH  Google Scholar 

  3. Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with random data. J. Stat. Phys. 104(5–6), 1349–1387 (2001). https://doi.org/10.1023/A:1010474332598

    Article  MathSciNet  MATH  Google Scholar 

  4. Balan, R.M., Tudor, C.A.: The stochastic wave equation with fractional noise: a random field approach. Stoch. Process. Appl. 120(12), 2468–2494 (2010). https://doi.org/10.1016/j.spa.2010.08.006

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke de la Cerda, J., Tudor, C.A.: Hitting times for the stochastic wave equation with fractional colored noise. Rev. Mat. Iberoam. 30(2), 685–709 (2014). https://doi.org/10.4171/RMI/796

  6. Cohen, S., Istas, J.: Fractional Fields and Applications, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 73. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36739-7. With a foreword by Stéphane Jaffard

  7. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 4(6), 29 (1999). https://doi.org/10.1214/EJP.v4-43

  8. Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat. 3, 231–271 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems for non-linear stochastic heat equations with multiplicative noise. Probab. Theory Relat. Fields 144(3–4), 371–427 (2009). https://doi.org/10.1007/s00440-008-0150-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Dalang, R.C., Mueller, C., Xiao, Y.: Polarity of points for Gaussian random fields. Ann. Probab. 45(6B), 4700–4751 (2017). https://doi.org/10.1214/17-AOP1176

    Article  MathSciNet  MATH  Google Scholar 

  11. Dalang, R.C., Mueller, C., Xiao, Y.: Polarity of almost all points for systems of nonlinear stochastic heat equations in the critical dimension. Ann. Probab. 49(5), 2573–2598 (2021). https://doi.org/10.1214/21-aop1516

    Article  MathSciNet  MATH  Google Scholar 

  12. Dalang, R.C., Nualart, E.: Potential theory for hyperbolic SPDEs. Ann. Probab. 32(3A), 2099–2148 (2004). https://doi.org/10.1214/009117904000000685

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalang, R.C., Sanz-Solé, M.: Criteria for hitting probabilities with applications to systems of stochastic wave equations. Bernoulli 16(4), 1343–1368 (2010). https://doi.org/10.3150/09-BEJ247

    Article  MathSciNet  MATH  Google Scholar 

  14. Herrell, R., Song, R., Wu, D., Xiao, Y.: Sharp space-time regularity of the solution to stochastic heat equation driven by fractional-colored noise. Stoch. Anal. Appl. 38(4), 747–768 (2020). https://doi.org/10.1080/07362994.2020.1721301

    Article  MathSciNet  MATH  Google Scholar 

  15. Hinojosa-Calleja, A., Sanz-Solé, M.: Anisotropic Gaussian random fields: criteria for hitting probabilities and applications. Stoch. Partial Differ. Equ. Anal. Comput. 9(4), 984–1030 (2021). https://doi.org/10.1007/s40072-021-00190-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinojosa-Calleja, A., Sanz-Solé, M.: A linear stochastic biharmonic heat equation: hitting probabilities. Stoch. Partial Differ. Equ. Anal. Comput. 10(3), 735–756 (2022). https://doi.org/10.1007/s40072-021-00234-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Khoshnevisan, D.: Multiparameter Processes. Springer Monographs in Mathematics. Springer, New York (2002). https://doi.org/10.1007/b97363. An Introduction to Random Fields

  18. Liu, J.: Fractional kinetic equation driven by general space-time homogeneous Gaussian noise. Bull. Malays. Math. Sci. Soc. 42(6), 3475–3499 (2019). https://doi.org/10.1007/s40840-019-00766-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Márquez-Carreras, D.: Generalized fractional kinetic equations: another point of view. Adv. Appl. Probab. 41(3), 893–910 (2009). https://doi.org/10.1239/aap/1253281068

    Article  MathSciNet  MATH  Google Scholar 

  20. Márquez-Carreras, D.: Small stochastic perturbations in a general fractional kinetic equation. ESAIM Probab. Stat. 19, 81–99 (2015). https://doi.org/10.1051/ps/2014015

    Article  MathSciNet  MATH  Google Scholar 

  21. Mueller, C., Tribe, R.: Hitting properties of a random string. Electron. J. Probab. 7(10), 29 (2002). https://doi.org/10.1214/EJP.v7-109

    Article  MathSciNet  MATH  Google Scholar 

  22. Nualart, E., Viens, F.: The fractional stochastic heat equation on the circle: time regularity and potential theory. Stoch. Process. Appl. 119(5), 1505–1540 (2009). https://doi.org/10.1016/j.spa.2008.07.009

    Article  MathSciNet  MATH  Google Scholar 

  23. Radchenko, V.M., Stefans’ka, N.O.: The Fourier transform of general stochastic measures. Teor. Ĭmovīr. Mat. Stat. 94, 143–149 (2016). https://doi.org/10.1090/tpms/1015

    Article  Google Scholar 

  24. Rogers, C.A.: Hausdorff Measures. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998); Reprint of the 1970 original, with a foreword by K. J. Falconer

  25. Tudor, C.A.: Analysis of Variations for Self-Similar Processes. Probability and Its Applications (New York). Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00936-0. A Stochastic Calculus Approach

  26. Tudor, C.A., Xiao, Y.: Sample paths of the solution to the fractional-colored stochastic heat equation. Stoch. Dyn. 17(1), 1750004 (2017). https://doi.org/10.1142/S0219493717500046

  27. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986). https://doi.org/10.1007/BFb0074920

Download references

Acknowledgements

The authors thank the anonymous referees for an in-depth review of the initial version of the manuscript which led to several improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tau Zhou.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National key R &D Program of China under Grant (No. 2020YFA0713701) and National Natural Science Foundation of China (Nos. 11971470, 12031020, 12171047).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, D., Zhou, T. Hitting properties of generalized fractional kinetic equation with time-fractional noise. Stoch PDE: Anal Comp (2023). https://doi.org/10.1007/s40072-023-00321-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40072-023-00321-w

Keywords

Mathematics Subject Classification

Navigation