Skip to main content
Log in

Development of an indigenous multi-collector inductively coupled plasma mass spectrometer

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, a multi-collector inductively coupled plasma mass spectrometer has been developed for the precise isotopic ratio analysis of the elements as well as trace elemental analysis. This mass spectrometer incorporates a forward geometry double focusing arrangement consisting of a cylindrical electrostatic analyser and a magnetic sector. The collector system of this mass spectrometer is equipped with multi-cup Faraday collectors having a width of 1.5 mm each. The paper describes the double focusing design parameters of the system with first- and second-order aberration coefficients and further demonstrates their validation through computer simulation. After validation of the individual subsystems, the complete system was characterized using standards of various elements namely Strontium, Indium, Lead, and Uranium for precise isotopic ratio measurement, sensitivity, mass resolution and detection limit. The electron multiplier detector will be incorporated at a later stage for the ultra-trace elemental analysis using fast magnetic scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R S Houk, V A Fassel, G D Flesch, H J Svec, A L Gray and C E Taylor Anal. Chem. 52 2283 (1980)

    Article  Google Scholar 

  2. A L Gray Spectrochimica Acta Part B 40 1525 (1985)

    Article  ADS  Google Scholar 

  3. H Niu and R S Houk Spectrochimica Acta Part B 51 779 (1996)

    Article  ADS  Google Scholar 

  4. D W Koppenaal Anal. Chem. 60 113R (1988)

    Article  Google Scholar 

  5. M A Vaughan and G Horlick Appl. Spctrosc. 40 434 (1986)

    Article  ADS  Google Scholar 

  6. I T Platzner Modern isotope ratio mass spectrometry (Hoboken: Wiley) (1997)

    Google Scholar 

  7. J Mattauch and R Herzog Z. Phys. 89 786 (1934)

    Article  ADS  Google Scholar 

  8. J Mattauch Phys. Rev. 50 617 (1936)

    Article  ADS  Google Scholar 

  9. E F Cromwell and P Arrowsmith J. Am. Soc. Mass Spectrom. 7 458 (1996)

    Article  Google Scholar 

  10. S H Nam Appl. Spectrosc. 52 161 (1998)

    Article  ADS  Google Scholar 

  11. D A Solyom, T W Burgoyne and G M Hieftje J. Anal. At. Spectrom. 14 1101 (1999)

    Article  Google Scholar 

  12. D A Solyom, O A Gron, J H Barnes IV and G M Hieftje Spectrochimica Acta Part B 56 1717 (2001)

    Article  ADS  Google Scholar 

  13. O Alfred and J Nier Am. Soc. Mass Spectrom. 2 447 (1991)

    Article  Google Scholar 

  14. N Bradshaw J. Anal. At. Spectrom. 4 801 (1989)

    Article  Google Scholar 

  15. A J Walder and P A Freedman J. Anal. At. Spectrom. 7 571 (1992)

    Article  Google Scholar 

  16. F Vanhaecke Anal. Chem. 68 567 (1996)

    Article  Google Scholar 

  17. H Wollnik Nucl. Instr. Meth. 52 250 (1967)

    Article  Google Scholar 

  18. H Wollnik Nucl. Instr. Meth. 59 277 (1968)

    Article  Google Scholar 

  19. H Matsuda Int. J. Mass Spectrometry Ion Phys. 14 219 (1974)

  20. D A Dahl SIMION version 7.0 (Idaho National Engineering Laboratory) (2000)

  21. S Clement and W Compston Int. J. Mass Spectrom. Ion Phys. 10 323 (1973)

    Article  ADS  Google Scholar 

  22. N Jakubowski, L Moens and V Frank Spectrochimica Acta Part B 53 1739 (1998)

    Article  ADS  Google Scholar 

  23. A H Grange, R J O’Brien and D F Barofsky Rev. Sci. Instrum. 59 656 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the mechanical, electrical and electronics sections of Electromagnetic Application & Instrumentation Division, Bhabha Atomic Research Centre, Mumbai for their support at various stages of development. The authors also acknowledge the constant support and guidance of the seniors from Electromagnetic Application & Instrumentation Division and Physics Group, Bhabha Atomic Research Centre, Mumbai. Authors extend special thanks to Department of Atomic Energy for providing the funds for the above development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, Y., Bhatia, R.K., Ravisankar, E. et al. Development of an indigenous multi-collector inductively coupled plasma mass spectrometer. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03012-3

Keywords

Navigation