Skip to main content
Log in

A flexible fixed-phase quantum search algorithm for searching unordered databases with any size

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In order to improve the practicability of Grover’s algorithm, this paper designs a flexible phase selection strategy and an initial state construction method for an unstructured database. The flexibility of the proposed algorithm is manifested in three aspects. First, it is suitable for an unordered database of any size, unlike traditional algorithms that must be an integer power of 2. In the existing approach, one must use padding when this requirement is not met. To this end, we propose a design method for an equal quantum superposition state containing any number of basis states. Second, the rotation phase in the search engine can be fixed to any value in the interval \((0, \pi ]\). We investigate the relationship between the rotation phase in the search engine and the probability of success and the number of search steps, and provide the formulas for calculating the probability of success and the number of search steps under any rotation phase. Third, for the case where the number of marked items is not known in advance, a specific search scheme using the search engine with rotation phase of \(\pi /3\) is also given, and theoretical analysis shows that it can find a match in \(O(\sqrt{N/M})\) search steps, where N is the total number of basis states and M is the number of marked states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available at https://github.com/Geologicalmonkey/Flexible_Fixed_Phase_Grover.

References

  1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM Press, New York (1996)

  2. Dong, P.C.: Quantum database searching by a single query. arXiv:quant-ph/9708005v1 (1997)

  3. Grover, L.K.: Quantum search on structured problems. Chaos Solitons Fractals 10(10), 1695–1705 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Long, G.L., Li, Y.S., Zhang, W.L., et al.: Phase matching in quantum searching. Phys. Lett. A 262(1), 27–34 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Long, G.L., Li, X., Sun, Y.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A 294(3–4), 143–152 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Hoyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62(052304), 1–5 (2000)

    Google Scholar 

  7. Li, D.F., Li, X.X.: More general quantum search algorithm \(Q=I_\gamma VI_\tau U\) and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Lett. A 287(5–6), 304–316 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Li, D.F., Li, X.X., Huang, H.T.: Phase condition for the Grover algorithm. Theor. Math. Phys. 144(3), 1279–1287 (2005)

    Article  MathSciNet  Google Scholar 

  9. Long, G. L., Zhang, W. L., Li, Y. S., et al.: Arbitrary phase rotation of the marked state can not be used for Grover’s quantum search algorithm. arXiv:quant-ph/9904077v1 (1999)

  10. Long, G. L., Tu, C. C., Li, Y. S., et al.: A novel SO(3) picture for quantum searching. arXiv:quant-ph/9911004v1 (1999)

  11. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(022307), 1–4 (2001)

    Google Scholar 

  12. Toyama, F.M., Dijk, W.V., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters. Quantum Inf. Process. 12(10), 1897–1914 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Grover, L.K.: Fixed-point quantum search. Phys. Rev. Lett. 95(150501), 1–4 (2005)

    Google Scholar 

  14. Li, D.F., Li, X.R., Huang, H.T., et al.: Fixed-point quantum search for different phase shifts. Phys. Lett. A 362(4–5), 260–264 (2007)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Younes, A.: Towards more reliable fixed phase quantum search algorithm. Appl. Math. Inf. Sci. 7(1), 93–98 (2013)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Li, P.C.: A fixed-phase quantum search algorithm with more flexible behavior. J. Quantum Inf. Sci. 2(2), 28–34 (2012)

    Article  Google Scholar 

  17. Brion, D., Biham, O., Biham, E., et al.: Generalized Grover search algorithm for arbitrary initial amplitude distribution. arXiv:quant-ph/9801066v2 (1998)

  18. Biham, E., Biham, O., Biron, D., et al.: Analysis of generalized Grover’s quantum search algorithms using recursion equations. arXiv:quant-ph/0010077v1 (2000)

  19. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80(19), 4329–4332 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Tulsi, A.: Quantum computers can search rapidly by using almost any selective transformation. Phys. Rev. A 78(022332), 1–7 (2008)

    Google Scholar 

  21. Boyer, M., Hoyer, P., Tapp, A.: Tight bounds on quantum searching. arXiv:quant-ph/9605034v1 (1998)

  22. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014v2 (1996)

  23. Brassard, G., Hoyer, P., Tapp, A.: Quantum counting. arXiv:quant-ph/9805082v1 (1998)

  24. Giri, P.R., Korepin, V.E.: A review on quantum search algorithms. Quantum Inf. Process. 16(12), 1–36 (2017)

    Article  MathSciNet  Google Scholar 

  25. Farhi, E., Goldstone, J. Gutmann, S.A: Quantum approximate optimization algorithm. ArXiv e-prints (2014). arXiv:1411.4028

  26. Mauro, E.S., Morales, T.T., Jacob, B.: Variational learning of Grover’s quantum search algorithm. Phys. Rev. A 98(6), 062333 (2018)

    Article  ADS  Google Scholar 

  27. Wang, S.C., Chi, Y., Yu, L., et al.: Implementing a quantum search algorithm with nonorthogonal states. Phys. Rev. A 103, 032413 (2021)

    Article  ADS  CAS  Google Scholar 

  28. Wang, Y.L., Predrag, S.K.: Prospect of using Grover’s search in the noisy-intermediate-scale quantum-computer era. Phys. Rev. A 102, 042609 (2020)

    Article  ADS  CAS  Google Scholar 

  29. Tim, B., Gary, F., Louis, T.: Generalized Grover’s algorithm for multiple phase inversion states. Phys. Rev. Lett. 120, 060501 (2018)

    Article  Google Scholar 

  30. Zhang, K., Vladimir, E.K.: Depth optimization of quantum search algorithms beyond Grover’s algorithm. Phys. Rev. A 101, 032346 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Figgatt, C., Maslov, D., Landsman, K.A., et al.: Complete 3-Qubit Grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Willian, N.N., Song, X.Y., Yang, G.W., et al.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)

    Article  Google Scholar 

  33. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Younes, A.: Fixed phase quantum search algorithm. arXiv:0704.1585

  35. Younes, A.: Quantum search algorithm with more reliable behavior using partial diffusion. Quantum Commun. 734, 171–174 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of our institutions and would like to thank other members of our research team for their encouragement and support during the writing of this paper.

Funding

This work was supported by the Natural Science Foundation of Heilongjiang Province (CN) (Grant No. LH2022F006).

Author information

Authors and Affiliations

Authors

Contributions

PL contributed in the development of the idea, supervision of the work, and correction of the manuscript. ZL wrote the manuscript, developed and tested the code, and analyzed the results.

Corresponding author

Correspondence to Panchi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, Z. A flexible fixed-phase quantum search algorithm for searching unordered databases with any size. J Comput Electron 23, 176–187 (2024). https://doi.org/10.1007/s10825-023-02113-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02113-w

Keywords

Navigation