Skip to main content
Log in

Bragg Resonances in a Multiferroic Double-Nonlinearity Crystal

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of double (electrical and magnetic) nonlinearity on the Bragg resonances of the hybrid electromagnetic-spin waves in a multiferroic crystal has been theoretically and experimentally revealed. The multiferroic crystal consists of an yttrium iron garnet layer with a periodic system of grooves on the surface and a ferroelectric strontium–barium titanate layer. A dispersion relation for the hybrid waves is obtained, and the mechanism of formation of main and hybrid band gaps, namely, suppression bands, is revealed. It is shown that taking into account the magnetic nonlinearity leads to frequency rearrangement of both band gaps and taking into account the electrical nonlinearity leads to frequency rearrangement of only the hybrid band gap. In the general case, the effects of the electrical and magnetic nonlinearities on the hybrid band gap can be compensated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Barman, G. Gubbiotti, S. Ladak, et al., J. Phys.: Condens. Matter 33, 413001 (2021).

  2. Q. Wang, M. Kewenig, M. Schneider, et al., Nat. Electron. 3, 765 (2020).

    Article  Google Scholar 

  3. H. Qin, R. B. Hollander, L. Flajsman, et al., Nat. Commun. 12, 2293 (2021).

    Article  ADS  Google Scholar 

  4. B. Heinz, T. Bracher, M. Schneider, et al., Nano Lett. 20, 4220 (2020).

    Article  ADS  Google Scholar 

  5. V. Garcia, M. Bibes, and A. Barthelemy, C. R. Phys. 16, 168 (2015).

    Article  ADS  Google Scholar 

  6. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  7. N. X. Sun and G. Srinivasan, SPIN 02, 1240004 (2012).

  8. C.-W. Nan, M. I. Bichurin, S. Dong, et al., J. Appl. Phys. 103, 031101 (2008).

  9. V. B. Anfinogenov, T. N. Verbitskaya, P. E. Zil’berman, et al., Sov. Tech. Phys. Lett. 12, 185 (1986).

    Google Scholar 

  10. O. G. Vendik, B. A. Kalinikos, and S. I. Miteva, Izv. Vyssh. Uchebn. Zaved., Radioelektron. 24, 52 (1981).

    Google Scholar 

  11. A. A. Nikitin, A. V. Kondrashov, A. B. Ustinov, et al., J. Appl. Phys. 122, 153903 (2017).

  12. I. A. Ustinova, A. A. Nikitin, and A. B. Ustinov, Tech. Phys. 61, 473 (2016).

    Article  Google Scholar 

  13. M. A. Morozova, O. V. Matveev, Yu. P. Sharaevskii, and S. A. Nikitov, Phys. Solid State 58, 273 (2016).

    Article  ADS  Google Scholar 

  14. M. A. Morozova, S. V. Grishin, A. V. Sadovnikov, et al., IEEE Trans. Magn. 51, 2802504 (2015).

  15. A. V. Drozdovskii, A. A. Nikitin, A. B. Ustinov, and B. A. Kalinikos, Tech. Phys. 59, 1032 (2014).

    Article  Google Scholar 

  16. I. A. Ustinova, A. A. Nikitin, and A. B. Ustinov, Tech. Phys. 61, 473 (2016).

    Article  Google Scholar 

  17. A. A. Nikitin, A. A. Nikitin, and A. V. Kondrashov, J. Appl. Phys. 122, 153903 (2017).

  18. A. B. Ustinov and B. A. Kalinikos, Tech. Phys. Lett. 40, 568 (2014).

    Article  ADS  Google Scholar 

  19. S. L. Vysotsky and Y. A. Filimonov, in Proceedings of the International Symposium on Spin Waves, St. Petersburg (2013), p. 156.

  20. P. E. Wigen, Nonlinear Phenomena and Chaos in Magnetic Materials (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  21. D. D. Stancil and A. Prabhakar, Spin Waves. Theory and Applications (Springer, New York, 2009).

    MATH  Google Scholar 

  22. A. Scott, Nonlinear Science (Oxford Univ. Press, Oxford, 2003).

    Book  MATH  Google Scholar 

  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2013).

    MATH  Google Scholar 

  24. M. A. Cherkasskii, A. A. Nikitin, and B. A. Kalinikos, J. Exp. Theor. Phys. 122, 727 (2016).

    Article  ADS  Google Scholar 

  25. M. A. Cherkasskii and B. A. Kalinikos, JETP Lett. 97, 611 (2013).

    Article  ADS  Google Scholar 

  26. A. G. Glushchenko, Sov. Phys. Solid State 33, 920 (1991).

    Google Scholar 

  27. A. V. Vashkovskii, B. S. Stal’makhov, and Yu. P. Shara-evskii, Magnetostatic Waves in Microwave Electronics (Saratov. Univ., Saratov, 1993) [in Russian].

    Google Scholar 

  28. M. A. Morozova, A. Y. Sharaevskaya, A. V. Sadovnikov, et al., J. Appl. Phys. 120, 223901 (2016).

  29. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

    Google Scholar 

  30. L. Z. Cao, B. L. Cheng, S. Y. Wang, et al., J. Appl. Phys. 98, 034106 (2005).

  31. A. K. Zvezdin, Sov. Phys. JETP 57, 350 (1983).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-79-30027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Morozova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

This article is prepared for the memorial issue of the journal dedicated to the 95th birthday of L.A. Prozorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, M.A., Matveev, O.V., Romanenko, D.V. et al. Bragg Resonances in a Multiferroic Double-Nonlinearity Crystal. J. Exp. Theor. Phys. 137, 432–441 (2023). https://doi.org/10.1134/S1063776123100060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123100060

Navigation