Skip to main content
Log in

Noncovalent Stabilization of Water-Soluble Zinc Phthalocyaninate in Graphene Oxide Hydrosol

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The possibility of stabilization of zinc(II) 2,3,9,10,16,17,23,24-octa[(3,5-sodium biscarboxylate)phenoxy] phthalocyaninate (ZnPc16) by its hybridization with the surface of graphene oxide (GO) sheets via van der Waals or coordination bonds with functional groups of the carbon matrix in the GO hydrosols has been investigated. A combination of physicochemical analysis methods (scanning electron microscopy, fluorescence microscopy, powder X-ray diffraction, and Raman spectroscopy) has been employed to confirm the integration of ZnPc16 with GO nanosheets and to study the morphology and structure of the obtained hybrid materials. Using electronic absorption spectroscopy, it has been found that, regardless of the hybridization method, the binding of the macrocycles to the inorganic particles increases the stability of ZnPc16 in an aqueous medium being irradiated with visible light. The analysis of spectral kinetic data has shown that, in contrast to the system obtained by direct integration of ZnPc16 and GO, the hybrid material formed by coordination bonding of the components via zinc acetate (Zn(OAc)2) as a binding metal cluster is able to exhibit photocatalytic properties in oxidative photodegradation of some model organic pollutant substrates (rhodamine 6G, 1,5-dihydroxynaphthalene, and 1,4-nitrophenol). The proposed colloid-chemical approach to the stabilization of photoactive water-soluble phthalocyaninates makes it possible to increase their resistance to photoinduced self-oxidation and can be adapted for various derivatives of tetrapyrrole compounds possessing photosensitizing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Gyamfi, B.A., Onifade, S.T., Nwani, C., and Bekun, F.V., Accounting for the combined impacts of natural resources rent, income level, and energy consumption on environmental quality of G7 economies: A panel quantile regression approach, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 2, pp. 2806–2818. https://doi.org/10.1007/s11356-021-15756-8

    Article  Google Scholar 

  2. Ebhota, W.S. and Jen, T.C., Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system, International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, vol. 7, no. 1, pp. 97–117. https://doi.org/10.1007/s40684-019-00101-9

  3. Mazzeo, A., Santalla, S., Gaviglio, C., Doctorovich, F., and Pellegrino, J., Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts, Inorg. Chim. Acta, 2020, vol. 517, p. 119950. https://doi.org/10.1016/j.ica.2020.119950

    Article  CAS  Google Scholar 

  4. Whittemore, T.J., Xue, C., Huang, J., Gallucci, J.C., and Turro, C., Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light, Nat. Chem., 2020, vol. 12, no. 2, pp. 180–185. https://doi.org/10.1038/s41557-019-0397-4

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y., Ren, K., Wang, L.L., and Fan, Z., Porphyrin-based heterogeneous photocatalysts for solar energy conversion, Chin. Chem. Lett., 2022, vol. 33, no. 1, pp. 33–60. https://doi.org/10.1016/j.cclet.2021.06.013

    Article  CAS  Google Scholar 

  6. Liu, M.L., Guo, J.L., Japip, S., et al., One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers, J. Mater. Chem. A, 2019, vol. 7, no. 7, pp. 3170–3178. https://doi.org/10.1039/C8TA11372F

  7. Liu, X., Chen, Q., Lv, L., Feng, X., and Meng, X., Preparation of transparent PVA/TiO2 nanocomposite films with enhanced visible-light photocatalytic activity, Catal. Commun., 2015, vol. 58, pp. 30–33. https://doi.org/10.1016/j.catcom.2014.08.032

    Article  CAS  Google Scholar 

  8. Das, P., Chakraborty, K., Chakrabarty, S., and Ghosh, S., Reduced graphene oxide - zinc phthalocyanine composites as fascinating material for optoelectronic and photocatalytic applications, Chemistry Select, 2017, vol. 2, no. 11, pp. 3297–3305. https://doi.org/10.1002/slct.201700384

    Article  CAS  Google Scholar 

  9. Zhang, Z., Wang, J., Liu, D., et al., Highly efficient organic photocatalyst with full visible light spectrum through π−π stacking of TCNQ-PTCDI, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 44, pp. 30225–30231. https://doi.org/10.1021/acsami.6b10186

    Article  CAS  PubMed  Google Scholar 

  10. Mak, C.H., Han, X., Du, M., et al., Heterogenization of homogeneous photocatalysts utilizing synthetic and natural support materials, J. Mater. Chem. A, 2021, vol. 9, no. 8, pp. 4454–4504. https://doi.org/10.1039/D0TA08334H

    Article  CAS  Google Scholar 

  11. Anaya-Rodríguez, F., Durán-Álvarez, J.C., Drisya, K.T., and Zanella, R., The challenges of integrating the principles of green chemistry and green engineering to heterogeneous photocatalysis to treat water and produce green H2, Catalysts, 2023, vol. 13, no. 1, p. 154. https://doi.org/10.3390/catal13010154

    Article  CAS  Google Scholar 

  12. Xu, C., Ravi Anusuyadevi, P., Aymonier, C., Luque, R., and Marre, S., Nanostructured materials for photocatalysis, Chem. Soc. Rev., 2019, vol. 48, no. 14, pp. 3868–3902. https://doi.org/10.1039/C9CS00102F

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y., Tian, J., Wei, L., et al., Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction, Sep. Purif. Technol., 2021, vol. 257, p. 117976. https://doi.org/10.1016/j.seppur.2020.117976

    Article  CAS  Google Scholar 

  14. Zhang, X.Y., Li, H.P., Cui, X.L., and Lin, Y., Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem., 2010, vol. 20, no. 14, pp. 2801–2806. https://doi.org/10.1039/B917240H

    Article  CAS  Google Scholar 

  15. Nemiwal, M., Zhang, T.C., and Kumar, D., Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity, Sci. Total Environ., 2021, vol. 767, p. 144896. https://doi.org/10.1016/j.scitotenv.2020.144896

    Article  CAS  PubMed  Google Scholar 

  16. Hsu, H.C., Shown, I., Wei, H.Y., et al., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion, Nanoscale, 2013, vol. 5, no. 1, pp. 262–268. https://doi.org/10.1039/C2NR31718D

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Y.S. and Yao, J., Organic one-dimensional nanostructures: Construction and optoelectronic properties, One-Dimens. Nanostruct.: Princ. Appl., 2013, vol. 43, no. 3, pp. 381–395. https://doi.org/10.1002/9781118310342.ch17

    Article  Google Scholar 

  18. Chen, Y.Z., Li, W.H., Li, L., and Wang, L.N., Progress in organic photocatalysts, Rare Met., 2018, vol. 37, no. 1, pp. 1–12. https://doi.org/10.1007/s12598-017-0953-2

    Article  CAS  Google Scholar 

  19. Kosco, J., Moruzzi, F., Willner, B., and McCulloch, I., Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications, Adv. Energy Mater., 2020, vol. 10, no. 39, p. 2001935. https://doi.org/10.1002/aenm.202001935

    Article  CAS  Google Scholar 

  20. Díaz, U., Brunel, D., and Corma, A., Catalysis using multifunctional organosiliceous hybrid materials, Chem. Soc. Rev., 2013, vol. 42, no. 9, pp. 4083–4097. https://doi.org/10.1039/C2CS35385G

    Article  PubMed  Google Scholar 

  21. Arslanov, V.V., Kalinina, M.A., Ermakova, E.V., Raitman, O.A., Gorbunova, Y.G., et al., Hybrid materials based on graphene derivatives and porphyrin metal-organic frameworks, Russ. Chem. Rev., 2019, vol. 88, no. 8, pp. 775–799. https://doi.org/10.1070/RCR4878

    Article  CAS  Google Scholar 

  22. Zhao, G., Pang, H., Liu, G., et al., Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light, Appl. Catal., B, 2017, vol. 200, pp. 141–149. https://doi.org/10.1016/j.apcatb.2016.06.074

    Article  CAS  Google Scholar 

  23. Nugmanova, A.G. and Kalinina, M.A., Supramolecular self-assembly of hybrid colloidal systems, Colloid J., 2022, vol. 84, no. 5, pp. 642−662. https://doi.org/10.1134/S1061933X22700107

    Article  CAS  Google Scholar 

  24. Gacka, E., Burdzinski, G., Marciniak, B., Kubas, A., and Lewandowska-Andralojc, A., Interaction of light with a non-covalent zinc porphyrin–graphene oxide nanohybrid, Phys. Chem. Chem. Phys., 2020, vol. 22, no. 24, pp. 13456–13466. https://doi.org/10.1039/D0CP02545C

    Article  CAS  PubMed  Google Scholar 

  25. Sorokin, A.B., Phthalocyanine metal complexes in catalysis, Chem. Rev., 2013, vol. 113, no. 10, pp. 8152–8191. https://doi.org/10.1021/cr4000072

    Article  CAS  PubMed  Google Scholar 

  26. Jin, L., Lv, S., Miao, Y., Liu, D., and Song, F., Recent development of porous porphyrin-based nanomaterials for photocatalysis, ChemCatChem, 2021, vol. 13, no. 1, pp. 140–152. https://doi.org/10.1002/cctc.202001179

    Article  CAS  Google Scholar 

  27. Liu, W., Jensen, T.J., Fronczek, F.R., et al., Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines, J. Med. Chem., 2005, vol. 48, no. 4, pp. 1033–1041. https://doi.org/10.1021/jm049375b

    Article  CAS  PubMed  Google Scholar 

  28. Gregory, P., Industrial applications of phthalocyanines, J. Porphyrins Phthalocyanines, 2000, vol. 4, no. 4, pp. 432–437. https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N

    Article  CAS  Google Scholar 

  29. Nikoloudakis, E., López-Duarte, I., Charalambi-dis, G., Ladomenou, K., Ince, M., and Coutso-lelos, A.G., Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction, Chem. Soc. Rev., 2022, vol. 51, no. 16, pp. 6965–7045. https://doi.org/10.1039/D2CS00183G

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Zuo, P., Wang, F., et al., Covalent immobilization of phthalocyanine on graphene oxide for the degradation of phenol, J. Taiwan Inst. Chem. Eng., 2019, vol. 104, pp. 187–200. https://doi.org/10.1016/j.jtice.2019.09.007

    Article  CAS  Google Scholar 

  31. Qian, J., Liu, Y., Zheng, W., Zhou, B., and Dong, X., Covalent modification of iron phthalocyanine into skeleton of graphitic carbon nitride and its visible-light-driven photocatalytic reduction of nitroaromatic compounds, Catalysts, 2022, vol. 12, no. 7, p. 752. https://doi.org/10.3390/catal12070752

    Article  CAS  Google Scholar 

  32. Jiang, B.P., Hu, L.F., Wang, D.J., et al., Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method, J. Mater. Chem. B, 2014, vol. 2, no. 41, pp. 7141–7148. https://doi.org/10.1039/C4TB01038H

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, P., Kumar, A., Sreedhar, B., et al., Cobalt phthalocyanine immobilized on graphene oxide: An efficient visible-active catalyst for the photoreduction of carbon dioxide, Chem.-Eur. J., 2014, vol. 20, no. 20, pp. 6154–6161. https://doi.org/10.1002/chem.201304189

    Article  CAS  PubMed  Google Scholar 

  34. Dyrda, G., Kocot, K., Poliwoda, A., et al., Hybrid TiO2 @ phthalocyanine catalysts in photooxidation of 4-nitrophenol: Effect of the matrix and sensitizer type, J. Photochem. Photobiol., A, 2020, vol. 387, p. 112124. https://doi.org/10.1016/j.jphotochem.2019.112124

    Article  CAS  Google Scholar 

  35. Prasad, C., Liu, Q., Tang, H., et al., An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications, J. Mol. Liq., 2020, vol. 297, p. 111826. https://doi.org/10.1016/j.molliq.2019.111826

    Article  CAS  Google Scholar 

  36. Lu, K.Q., Li, Y.H., Tang, Z.R., and Xu, Y.J., Roles of graphene oxide in heterogeneous photocatalysis, ACS Mater. Au., 2021, vol. 1, no. 1, pp. 37–54. https://doi.org/10.1021/acsmaterialsau.1c00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Motevalli, B., Fox, B.L., and Barnard, A.S., Charge-dependent Fermi level of graphene oxide nanoflakes from machine learning, Comput. Mater. Sci., 2022, vol. 211, p. 111526. https://doi.org/10.1016/j.commatsci.2022.111526

    Article  CAS  Google Scholar 

  38. Hu, X., Mu, L., Wen, J., and Zhou, Q., Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses, Carbon, 2012, vol. 50, no. 8, pp. 2772–2781. https://doi.org/10.1016/j.carbon.2012.02.038

    Article  CAS  Google Scholar 

  39. Nugmanova, A.G. and Kalinina, M.A., Self-assembly of metal-organic frameworks in pickering emulsions stabilized with graphene oxide, Colloid J., 2021, vol. 83, no. 5, pp. 614–626. https://doi.org/10.1134/S1061933X21050094

    Article  CAS  Google Scholar 

  40. Meshkov, I.N., Zvyagina, A.I., Shiryaev, A.A., et al., Understanding self-assembly of porphyrin-based SURMOFs: How layered minerals can be useful, Langmuir, 2018, vol. 34, no. 18, pp. 5184–5192. https://doi.org/10.1021/acs.langmuir.7b04384

    Article  CAS  PubMed  Google Scholar 

  41. Nugmanova, A.G., Safonova, E.A., Baranchikov, A.E., et al., Interfacial self-assembly of porphyrin-based SURMOF/graphene oxide hybrids with tunable pore size: An approach toward size-selective ambivalent heterogeneous photocatalysts, Appl. Surf. Sci., 2022, vol. 579, p. 152080. https://doi.org/10.1016/j.apsusc.2021.152080

    Article  CAS  Google Scholar 

  42. Sladkevich, S., Gun, J., Prikhodchenko, P.V., et al., Peroxide induced tin oxide coating of graphene oxide at room temperature and its application for lithium ion batteries, Nanotechnology, 2012, vol. 23, no. 48, p. 485601. https://doi.org/10.1088/0957-4484/23/48/485601

    Article  PubMed  Google Scholar 

  43. Vagin, S.I., Ott, A.K., and Rieger, B., Paddle-wheel zinc carboxylate clusters as building units for metal-organic frameworks, Chem. Ing. Tech., 2007, vol. 79, no. 6, p. 767. https://doi.org/10.1002/cite.200700062

    Article  CAS  Google Scholar 

  44. Jaafar, E., Kashif, M., Sahari, S.K., et al., Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO), Mater. Sci. Forum, 2018, vol. 917, p. 112. https://doi.org/10.4028/www.scientific.net/MSF.917.112

    Article  Google Scholar 

  45. Gusarova, E.A., Zvyagina, A.I., Aleksandrov, A.E., et al., Interfacial self-assembly of ultrathin polydiacetylene/graphene oxide nanocomposites: A new method for synergetic enhancement of surface charge transfer without doping, Colloid Interface Sci. Commun., 2022, vol. 46, p. 100575. https://doi.org/10.1016/j.colcom.2021.100575

    Article  CAS  Google Scholar 

  46. Zvyagina, A.I., Gusarova, E.A., Averin, A.A., et al., Structural effect of perylene derivatives on their interaction with reduced graphene oxide monolayers, Russ. J. Inorg. Chem., 2021, vol. 66, p. 273. https://doi.org/10.1134/S0036023621020224

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-73-00095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kalinina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugmanova, A.G., Gorshkova, A.I., Yagodin, A.V. et al. Noncovalent Stabilization of Water-Soluble Zinc Phthalocyaninate in Graphene Oxide Hydrosol. Colloid J 85, 961–974 (2023). https://doi.org/10.1134/S1061933X23600859

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600859

Keywords:

Navigation