Skip to main content
Log in

Divergence and flutter instabilities of a non-conservative axial lattice under non-reciprocal interactions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Non-reciprocal interactions of discrete or continuous systems may induce surprising responses such as flutter instabilities. It is shown in this paper that a finite one-dimensional lattice under non-symmetrical elastic interactions may flutter for sufficiently strong unsymmetrical interactions. An exact solution is presented for the vibration of such one-dimensional lattices with direct and non-symmetrical elastic interactions. An internal force controlling the interactions is included in the model as an additional force for each mass, which acts proportionally to the elongation of a spring at its position. This non-conservative problem due to this circulatory interaction is solved from the resolution of a linear difference equation for this unsymmetrical repetitive lattice. It is possible to derive the exact eigenfrequency dependence with respect to the unsymmetrical interaction parameter, which plays the role of a bifurcation parameter. Divergence and flutter instabilities of this fixed–fixed non-conservative axial lattice under non-Hermitian interactions are theoretically predicted, from a direct approach or by solving the difference equation whatever the number of masses of the lattice. It is shown that the system may flutter for sufficiently strong unsymmetrical interactions, whatever the size of the system, for even or odd number of masses. However, divergence instability may arise in such a system only for even number of masses. The drastic change of response of the present system for odd or even number of particles is specific of the discrete nature of the dynamic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the authors upon reasonable request.

References

  1. Cui, T.J., Li, L., Liu, S., Ma, Q., Zhang, L., Wan, X., Cheng, Q.: Information metamaterial systems. Iscience 23(8), 101403 (2020)

    Article  Google Scholar 

  2. Moscatelli, M., Comi, C., Marigo, J.J.: On the dynamic behaviour of discrete metamaterials: From attenuation to energy localization. Wave Motion 104, 102733 (2021)

    Article  MathSciNet  Google Scholar 

  3. Chen, H.T., Padilla, W.J., Zide, J.M., Gossard, A.C., Taylor, A.J., Averitt, R.D.: Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)

    Article  Google Scholar 

  4. Chen, X., Feng Ma, H., Ying Zou, X., Xiang Jiang, W., Jun Cui, T.: Three-dimensional broadband and high-directivity lens antenna made of metamaterials. J. Appl. Phys. 110(4), 044904 (2011)

    Article  Google Scholar 

  5. Correas-Serrano, D., Gomez-Diaz, J.S., Sounas, D.L., Hadad, Y., Alvarez-Melcon, A., Alù, A.: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Antennas Wirel. Propag. Lett. 15, 1529–1532 (2015)

    Article  Google Scholar 

  6. Falcone, F., Lopetegi, T., Laso, M.A.G., Baena, J.D., Bonache, J., Beruete, M., Sorolla, M.: Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93(19), 197401 (2004)

    Article  Google Scholar 

  7. Khorasaninejad, M., Chen, W.T., Devlin, R.C., Oh, J., Zhu, A.Y., Capasso, F.: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352(6290), 1190–1194 (2016)

    Article  Google Scholar 

  8. Wu, H., Liu, S., Wan, X., Zhang, L., Wang, D., Li, L., Cui, T.J.: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Adv. Sci. 4(9), 1700098 (2017)

    Article  Google Scholar 

  9. Mehmood, M.Q., Mei, S., Hussain, S., Huang, K., Siew, S.Y., Zhang, L., Qiu, C.W.: Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 28(13), 2533–2539 (2016)

    Article  Google Scholar 

  10. Luo, W., Xiao, S., He, Q., Sun, S., Zhou, L.: Photonic spin Hall Effect with nearly 100% efficiency. Adv. Opt. Mater. 3(8), 1102–1108 (2015)

    Article  Google Scholar 

  11. Wang, L., Zhang, Y., Guo, X., Chen, T., Liang, H., Hao, X., Yang, Z.: A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 9(7), 965 (2019)

    Article  Google Scholar 

  12. Cui, T.J., Qi, M.Q., Wan, X., Zhao, J., Cheng, Q.: Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3(10), e218–e218 (2014)

    Article  Google Scholar 

  13. Hadad, Y., Soric, J.C., Alu, A.: Breaking temporal symmetries for emission and absorption. Proc. Natl. Acad. Sci. 113(13), 3471–3475 (2016)

    Article  Google Scholar 

  14. Rosa, M.I., Ruzzene, M.: Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions. New J. Phys. 22(5), 053004 (2020)

    Article  MathSciNet  Google Scholar 

  15. Zhou, L., Wang, Q.H., Wang, H., Gong, J.: Dynamical quantum phase transitions in non-Hermitian lattices. Phys. Rev. A 98(2), 022129 (2018)

    Article  Google Scholar 

  16. Torres, L.E.F.: Perspective on topological states of non-Hermitian lattices. J. Phys. Mater. 3(1), 014002 (2019)

    Article  Google Scholar 

  17. Lee, T.E.: Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116(13), 133903 (2016)

    Article  Google Scholar 

  18. Bradenbourger, M., Locsin, X., Lerner, E., Coulais, C.: non-reciprocal robotic metamaterials. Nat. Commun. 10, 4608 (2019)

    Article  Google Scholar 

  19. Bordiga, G., Piccolroaz, A., Bigoni, D.: A way to hypo-elastic artificial materials without a strain potential and displaying flutter instability. J. Mech. Phys. Solids 158, 104665 (2022)

    Article  MathSciNet  Google Scholar 

  20. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88(3), 035002 (2016)

    Article  Google Scholar 

  21. El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14(1), 11–19 (2018)

    Article  Google Scholar 

  22. Feng, L., El-Ganainy, R., Ge, L.: Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11(12), 752–762 (2017)

    Article  Google Scholar 

  23. Miri, M.A., Alù, A.: Exceptional points in optics and photonics. Science 363, eaar7709 (2019). https://doi.org/10.1126/science.aar7709

    Article  MathSciNet  Google Scholar 

  24. Malzard, S., Poli, C., Schomerus, H.: Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett. 115(20), 200402 (2015)

    Article  Google Scholar 

  25. Mochizuki, K., Kim, D., Obuse, H.: Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss. Phys. Rev. A 93(6), 062116 (2016)

    Article  Google Scholar 

  26. Xiao, L., Zhan, X., Bian, Z.H., Wang, K.K., Zhang, X., Wang, X.P., Xue, P.: Observation of topological edge states in parity–time-symmetric quantum walks. Nature Phys. 13(11), 1117–1123 (2017)

    Article  Google Scholar 

  27. St-Jean, P., Goblot, V., Galopin, E., Lemaître, A., Ozawa, T., Le Gratiet, L., Amo, A.: Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11(10), 651–656 (2017)

    Article  Google Scholar 

  28. Harari, G., Bandres, M.A., Lumer, Y., Rechtsman, M.C., Chong, Y.D., Khajavikhan, M., Segev, M.: Topological insulator laser: theory. Science 359(6381), eaar4003 (2018)

    Article  Google Scholar 

  29. Bandres, M.A., Wittek, S., Harari, G., Parto, M., Ren, J., Segev, M., Khajavikhan, M.: Topological insulator laser: experiments. Science 359(6381), eaar4005 (2018)

    Article  Google Scholar 

  30. Kozii, V., Fu, L.: Non-Hermitian topological theory of finite-lifetime quasiparticles: prediction of bulk Fermi arc due to exceptional point. (2017) ArXiv preprint arXiv: 1708.05841

  31. Zyuzin, A.A., Zyuzin, A.Y.: Flat band in disorder-driven non-Hermitian Weyl semimetals. Phys. Rev. B 97(4), 041203 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yoshida, T., Peters, R., Kawakami, N.: Non-Hermitian perspective of the band structure in heavy-fermion systems. Phys. Rev. B 98(3), 035141 (2018)

    Article  Google Scholar 

  33. Moors, K., Zyuzin, A.A., Zyuzin, A.Y., Tiwari, R.P., Schmidt, T.L.: Disorder-driven exceptional lines and Fermi ribbons in tilted nodal-line semimetals. Phys. Rev. B 99(4), 041116 (2019)

    Article  Google Scholar 

  34. Yoshida, T., Peters, R., Kawakami, N., Hatsugai, Y.: Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry. Phys. Rev. B 99(12), 121101 (2019)

    Article  Google Scholar 

  35. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  Google Scholar 

  36. Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  Google Scholar 

  37. Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12(6), 065010 (2010)

    Article  Google Scholar 

  38. Freed, D.S., Moore, G.W.: Twisted equivariant matter. In Annales Henri Poincaré, vol. 14, No. 8, pp. 1927–2023. Springer Basel, Basel (2013)

  39. Morimoto, T., Furusaki, A.: Topological classification with additional symmetries from Clifford algebras. Phys. Rev. B 88(12), 125129 (2013)

    Article  Google Scholar 

  40. Shiozaki, K., Sato, M.: Topology of crystalline insulators and superconductors. Phys. Rev. B 90(16), 165114 (2014)

    Article  Google Scholar 

  41. Chiu, C.K., Teo, J.C., Schnyder, A.P., Ryu, S.: Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88(3), 035005 (2016)

    Article  Google Scholar 

  42. Gomi, K.: Freed-moore k-theory. (2017) ArXiv preprint arXiv: 1705.09134

  43. Yao, S., Song, F., Wang, Z.: Non-Hermitian chern bands. Phys. Rev. Lett. 121(13), 136802 (2018)

    Article  Google Scholar 

  44. Yao, S., Wang, Z.: Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121(8), 086803 (2018)

    Article  MathSciNet  Google Scholar 

  45. Kunst, F.K., Edvardsson, E., Budich, J.C., Bergholtz, E.J.: Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121(2), 026808 (2018)

    Article  Google Scholar 

  46. Borgnia, D.S., Kruchkov, A.J., Slager, R.J.: Non-Hermitian boundary modes and topology. Phys. Rev. Lett. 124(5), 056802 (2020)

    Article  MathSciNet  Google Scholar 

  47. Yokomizo, K., Murakami, S.: Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123(6), 066404 (2019)

    Article  MathSciNet  Google Scholar 

  48. Fermi, E., Pasta, P., Ulam, S., Tsingou, M.:Studies of the nonlinear problems (No. LA-1940). Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (1955)

  49. Tarnai, T.: Infinitesimal and finite mechanisms. In: Pellegrino, S. (ed.) Deployable Structures, pp. 13–143. Springer, Wien, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Challamel.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Analysis of the axial lattice composed of N elements

Appendix: Analysis of the axial lattice composed of N elements

We study the systems shown in Fig. 

Fig. 3
figure 3figure 3

An axial granular beam with (n − 1)-degree-of-freedom \((n = 2,3,...,11)\) of a fixed-fixed non-Hermitian lattice

3, with n = 2, 3, …, 11- composed of n + 1 rigid particles with masses m connected by n + 2 massless springs k to each other (for the symmetrical interaction part). The flutter and the divergence load of the (n-1)-degree-of-freedom discrete non-Hermitian system can be analytically derived. Using Newton's second law, the matrix equation of motion in the absence of external forces for a fixed–fixed BCs is derived in the following general form,

$$ \begin{gathered} {\text{general}}\;{\text{form}} \Rightarrow (n - 1){\text{-degree-of-freedom}} \hfill \\ \left[ {\begin{array}{*{20}l} m \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & . \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & . \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & . \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & m \hfill \\ \end{array} } \right]_{n - 1 \times n - 1} \left\{ {\begin{array}{*{20}c} {\ddot{u}_{1} } \\ . \\ . \\ . \\ {\ddot{u}_{n - 1} } \\ \end{array} } \right\} + \left[ {\begin{array}{*{20}c} {2k - k_{CI} } & { - k} & 0 & 0 & 0 \\ {k_{CI} - k} & . & . & 0 & 0 \\ 0 & . & . & . & 0 \\ 0 & 0 & . & . & { - k} \\ 0 & 0 & 0 & {k_{CI} - k} & {2k - k_{CI} } \\ \end{array} } \right]_{n - 1 \times n - 1} \left\{ {\begin{array}{*{20}c} {u_{1} } \\ . \\ . \\ . \\ {u_{n - 1} } \\ \end{array} } \right\} = 0 \hfill \\ \end{gathered} $$
(40)

The \(\left[ K \right]\) matrix is not symmetrical due to the effects of unsymmetrical internal forces of the control interactions. The axial natural frequency of the free vibration is computed from the determinant equation:

$$ \det \;\left( {\left[ K \right] - \omega^{2} \left[ M \right]} \right) = 0 $$
(41)

which can be equivalently presented for the fixed–fixed BCs, and with the assumptions \(\frac{k}{m} = \omega_{0}^{2}\), \(\frac{\omega }{{\omega_{0} }} = \Omega\) and \(\frac{{k_{CI} }}{k} = \alpha\) can be written as follow

$$ \begin{aligned} &(a)\;n = 2 \Rightarrow {\text{one-degree-of- freedom}} \\ &\Omega ^{2} + \alpha - 2 = 0 \\ &(b)\;n = 3 \Rightarrow {\text{two-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(c)n = 4 \Rightarrow {\text{three-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(d)n = 5 \Rightarrow {\text{four-degree-of-freedom}} \\ & \left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(e)n = 6 \Rightarrow {\text{five-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(f)\;n = 7 \Rightarrow {\text{sex-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(g)\;n = 8 \Rightarrow {\text{seven-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(h)\;n = 9 \Rightarrow {\text{eight-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 \\ 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(i)\;n = 10 \Rightarrow {\text{nine-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ &(j)\;n = 11 \Rightarrow {\text{ten-degree-of-freedom}} \\ &\left| {\begin{array}{*{20}c} {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } & { - 1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & {\alpha - 1} & {2 - \alpha - \Omega ^{2} } \\ \end{array} } \right| = 0 \\ \end{aligned} $$
(42)

The polynomial axial natural frequency relationship is extracted from the expansion of the above determinant in terms of as below

$$ \begin{aligned} &(a)\;n = 2 \Rightarrow {\text{one-degree-of-freedom}} \\ &\Omega ^{2} + \alpha - 2 = 0 \\ &(b)\;n = 3 \Rightarrow {\text{two-degree-of-freedom}} \\ &\left( {2 - \alpha - \Omega ^{2} } \right)^{2} + \alpha - 1 = 0 \\ &(c)\;n = 4 \Rightarrow {\text{three-degree-of-freedom}} \\ &\left( {2 - \alpha - \Omega ^{2} } \right)\left[ {\left( {2 - \alpha - \Omega ^{2} } \right)^{2} + 2\alpha - 2} \right] = 0 \\ &(d)\;n = 5 \Rightarrow {\text{four-degree-of-freedom}} \\ &\left[ \begin{gathered} \Omega ^{8} + \left( {4\alpha - 8} \right)\Omega ^{6} + \left( {6\alpha ^{2} - 21\alpha + 21} \right)\Omega ^{4} + \left( {4\alpha ^{3} - 18\alpha ^{2} + 30\alpha - 20} \right)\Omega ^{2} \hfill \\ + \left( {\alpha ^{4} - 5\alpha ^{3} + 10\alpha ^{2} - 10\alpha + 5} \right) \hfill \\ \end{gathered} \right] = 0 \\ &(e)\;n = 6 \Rightarrow {\text{five-degree-of-freedom}} \\ &\left[ \begin{gathered} \Omega ^{{10}} + \left( {5\alpha - 10} \right)\Omega ^{8} + \left( {10\alpha ^{2} - 36\alpha + 36} \right)\Omega ^{6} + \left( {10\alpha ^{3} - 48\alpha ^{2} + 84\alpha - 56} \right)\Omega ^{4} \hfill \\ + \left( {5\alpha ^{4} - 28\alpha ^{3} + 63\alpha ^{2} - 70\alpha + 35} \right)\Omega ^{2} + \left( {\alpha ^{5} - 6\alpha ^{4} + 15\alpha ^{3} - 20\alpha ^{2} + 15\alpha - 6} \right) \hfill \\ \end{gathered} \right] = 0 \\ &(f)\;n = 7 \Rightarrow {\text{six-degree-of-freedom}} \\ &\left[ \begin{gathered} \Omega ^{{12}} + (6\alpha - 12)\Omega ^{{10}} + (15\alpha ^{2} - 55\alpha + 55)\Omega ^{8} + (20\alpha ^{3} - 100\alpha ^{2} + 180\alpha - 120)\Omega ^{6} \hfill \\ + (15\alpha ^{4} - 90\alpha ^{3} + 216\alpha ^{2} - 252\alpha + 126)\Omega ^{4} + (6\alpha ^{5} - 40\alpha ^{4} + 112\alpha ^{3} - 168\alpha ^{2} + 140\alpha - 56)\Omega ^{2} \hfill \\ + (\alpha ^{6} - 7\alpha ^{5} + 21\alpha ^{4} - 35\alpha ^{3} + 35\alpha ^{2} - 21\alpha + 7) \hfill \\ \end{gathered} \right] = 0 \\ &(g)\;n = 8 \Rightarrow {\text{seven-degree-of-freedom}} \\ &\left[ \begin{gathered} - \Omega ^{{14}} + \left( {14 - 7\alpha } \right)\Omega ^{{12}} + \left( { - 21\alpha ^{2} + 78\alpha - 78} \right)\Omega ^{{10}} + \left( { - 35\alpha ^{3} + 180\alpha ^{2} - 330\alpha + 220} \right)\Omega ^{8} \hfill \\ + \left( { - 35\alpha ^{4} + 220\alpha ^{3} - 550\alpha ^{2} + 660\alpha - 330} \right)\Omega ^{6} + \left( { - 21\alpha ^{5} + 150\alpha ^{4} - 450\alpha ^{3} + 720\alpha ^{2} - 630\alpha + 252} \right)\Omega ^{4} \hfill \\ + \left( { - 7\alpha ^{6} + 54\alpha ^{5} - 180\alpha ^{4} + 336\alpha ^{3} - 378\alpha ^{2} + 252\alpha - 84} \right)\Omega ^{2} + \left( { - \alpha ^{7} + 8\alpha ^{6} - 28\alpha ^{5} + 56\alpha ^{4} - 70\alpha ^{3} + 56\alpha ^{2} - 28\alpha + 8} \right) \hfill \\ \end{gathered} \right] = 0 \\ &(h)\;n = 9 \Rightarrow {\text{eight-degree-of-freedom}} \\ &\left[ \begin{gathered} \Omega ^{{16}} + \left( {8\alpha - 16} \right)\Omega ^{{14}} + \left( {28\alpha ^{2} - 105\alpha + 105} \right)\Omega ^{{12}} + \left( {56\alpha ^{3} - 294\alpha ^{2} + 546\alpha - 364} \right)\Omega ^{{10}} \hfill \\ + \left( {70\alpha ^{4} - 455\alpha ^{3} + 1170\alpha ^{2} - 1430\alpha + 715} \right)\Omega ^{8} + \left( {56\alpha ^{5} - 420\alpha ^{4} + 1320\alpha ^{3} - 2200\alpha ^{2} + 1980\alpha - 792} \right)\Omega ^{6} \hfill \\ + \left( {28\alpha ^{6} - 231\alpha ^{5} + 825\alpha ^{4} - 1650\alpha ^{3} + 1980\alpha ^{2} - 1386\alpha + 462} \right)\Omega ^{4} + \left( \begin{gathered} 8\alpha ^{7} - 70\alpha ^{6} + 270\alpha ^{5} - 600\alpha ^{4} \hfill \\ + 840\alpha ^{3} - 756\alpha ^{2} + 420\alpha - 120 \hfill \\ \end{gathered} \right)\Omega ^{2} \hfill \\ + \left( {\alpha ^{8} - 9\alpha ^{7} + 36\alpha ^{6} - 84\alpha ^{5} + 126\alpha ^{4} - 126\alpha ^{3} + 84\alpha ^{2} - 36\alpha + 9} \right) \hfill \\ \end{gathered} \right] = 0 \\ &(i)\;n = 10 \Rightarrow {\text{nine-degree-of-freedom}} \\ &\left[ \begin{gathered} - \Omega ^{{18}} + \left( {18 - 9\alpha } \right)\Omega ^{{16}} + \left( { - 36\alpha ^{2} + 136\alpha - 136} \right)\Omega ^{{14}} + \left( { - 84\alpha ^{3} + 448\alpha ^{2} - 840\alpha + 560} \right)\Omega ^{{12}} \hfill \\ + \left( { - 126\alpha ^{4} + 840\alpha ^{3} - 2205\alpha ^{2} + 2730\alpha - 1365} \right)\Omega ^{{10}} + \left( { - 126\alpha ^{5} + 980\alpha ^{4} - 3185\alpha ^{3} + 5460\alpha ^{2} - 5005\alpha + 2002} \right)\Omega ^{8} \hfill \\ + \left( { - 84\alpha ^{6} + 728\alpha ^{5} - 2730\alpha ^{4} + 5720\alpha ^{3} - 7150\alpha ^{2} + 5148\alpha - 1716} \right)\Omega ^{6} + \left( \begin{gathered} - 36\alpha ^{7} + 336\alpha ^{6} - 1386\alpha ^{5} + 3300\alpha ^{4} \hfill \\ - 4950\alpha ^{3} + 4752\alpha ^{2} - 2772\alpha + 792 \hfill \\ \end{gathered} \right)\Omega ^{4} \hfill \\ + \left( { - 9\alpha ^{8} + 88\alpha ^{7} - 385\alpha ^{6} + 990\alpha ^{5} - 1650\alpha ^{4} + 1848\alpha ^{3} - 1386\alpha ^{2} + 660\alpha - 165} \right)\Omega ^{2} + \left( \begin{gathered} - \alpha ^{9} + 10\alpha ^{8} - 45\alpha ^{7} + 120\alpha ^{6} - 210\alpha ^{5} \hfill \\ + 252\alpha ^{4} - 210\alpha ^{3} + 120\alpha ^{2} - 45\alpha + 10 \hfill \\ \end{gathered} \right) \hfill \\ \end{gathered} \right] = 0 \\ &(j)\;n = 11 \Rightarrow {\text{ten-degree-of-freedom}} \\ &\left[ \begin{gathered} \Omega ^{{20}} + \left( {10\alpha - 20} \right)\Omega ^{{18}} + \left( {45\alpha ^{2} - 171\alpha + 171} \right)\Omega ^{{16}} + \left( {120\alpha ^{3} - 648\alpha ^{2} + 1224\alpha - 816} \right)\Omega ^{{14}} \hfill \\ + \left( {210\alpha ^{4} - 1428\alpha ^{3} + 3808\alpha ^{2} - 4760\alpha + 2380\Omega ^{{12}} } \right)\Omega ^{{12}} + \left( \begin{gathered} 252\alpha ^{5} - 2016\alpha ^{4} + 6720\alpha ^{3} - \hfill \\ 11760\alpha ^{2} + 10920\alpha - 4368 \hfill \\ \end{gathered} \right)\Omega ^{{10}} \hfill \\ + \left( {210\alpha ^{6} - 1890\alpha ^{5} + 7350\alpha ^{4} - 15925\alpha ^{3} + 20475\alpha ^{2} - 15015\alpha + 5005} \right)\Omega ^{8} + \left( \begin{gathered} 120\alpha ^{7} - 1176\alpha ^{6} + 5096\alpha ^{5} - 12740\alpha ^{4} + \hfill \\ 20020\alpha ^{3} - 20020\alpha ^{2} + 12012\alpha - 3432 \hfill \\ \end{gathered} \right)\Omega ^{6} \hfill \\ + \left( {45\alpha ^{8} - 468\alpha ^{7} + 2184\alpha ^{6} - 6006\alpha ^{5} + 10725\alpha ^{4} - 12870\alpha ^{3} + 10296\alpha ^{2} - 5148\alpha + 1287} \right)\Omega ^{4} \hfill \\ + \left( \begin{gathered} 10\alpha ^{9} - 108\alpha ^{8} + 528\alpha ^{7} - 1540\alpha ^{6} + 2970\alpha ^{5} - 3960\alpha ^{4} \hfill \\ + 3696\alpha ^{3} - 2376\alpha ^{2} + 990\alpha - 220 \hfill \\ \end{gathered} \right)\Omega ^{2} + \left( \begin{gathered} \alpha ^{{10}} - 11\alpha ^{9} + 55\alpha ^{8} - 165\alpha ^{7} + 330\alpha ^{6} - 462\alpha ^{5} \hfill \\ + 462\alpha ^{4} - 330\alpha ^{3} + 165\alpha ^{2} - 55\alpha + 11 \hfill \\ \end{gathered} \right) \hfill \\ \end{gathered} \right] = 0 \\ \end{aligned} $$
(43)

The above equations (a-j) are drawn in Fig. 

Fig. 4
figure 4

Variations of dimensionless frequencies versus the various values of \(\alpha\) in the n − 1-degree-of-freedom system for a fixed–fixed non-Hermitian lattice

4 for a fixed–fixed non-Hermitian lattice. Based on the result obtained from the above equation, it is possible to prove the correctness of the general results calculated for divergence and flutter instabilities.

As explained earlier in the paper, flutter instability is calculated by setting \(\Delta = 0\) in the system characteristic equation. Hence, in order to better understand the concept of flutter instability and prove that, in Eq. (44) the results of the discriminant calculation, \({\text{discrim}}\left( {I_{n} ,x} \right),\) were added as follows to some of value n = 3,…, 7 and it was checked that this distinction disappeared, \({\text{eval}}\left\{ {{\text{discrim}}\left( {I_{n} ,x} \right),\alpha } \right\} = 0\) for \(\alpha_{{{\text{flutter}}}} = 1\).

$$ \begin{aligned} &{\text{ Supposing}}\;x = \Omega^{2} \\ &(I_{1} )\;n = 3 \Rightarrow {\text{two -degree-of-freedom}} \\ &\left( {2 - \alpha - x} \right)^{2} + \alpha - 1 = 0 \Rightarrow {\text{discrim}}\left( {I_{1} ,x} \right) = - 4\alpha + 4 \\ &(I_{2} )\;n = 4 \Rightarrow {\text{three -degree-of-freedom}} \\ &\left( {2 - \alpha - x} \right)\left[ {\left( {2 - \alpha - x} \right)^{2} + 2\alpha - 2} \right] = 0 \Rightarrow {\text{discrim}}\left( {I_{2} ,x} \right) = - 32\left( {\alpha - 1} \right)^{3} \\ &(I_{3} )\;n = 5 \Rightarrow {\text{four -degree-of-freedom}} \\ &\left[ \begin{gathered} x^{4} + \left( {4\alpha - 8} \right)x^{3} + \left( {6\alpha^{2} - 21\alpha + 21} \right)x^{2} + \left( {4\alpha^{3} - 18\alpha^{2} + 30\alpha - 20} \right)x \hfill \\ + \left( {\alpha^{4} - 5\alpha^{3} + 10\alpha^{2} - 10\alpha + 5} \right) \hfill \\ \end{gathered} \right] = 0 \\ &\Rightarrow {\text{discrim}}\left( {I_{3} ,x} \right) = \left( \begin{gathered} - 34560\alpha^{12} + {435456}\alpha^{11} - {2415744 }\alpha^{10} + {7888320}\alpha^{9} \hfill \\ - {17077536}\alpha^{8} + {26015328}\alpha^{7} - {28424624}\alpha^{6} + {21787680}\alpha^{5} \hfill \\ - {10927920}\alpha^{4} + {3100960}\alpha^{3} - {333840}\alpha^{2} - {13920}\alpha + {400} \hfill \\ \end{gathered} \right) \\ &\Rightarrow {\text{eval}}\left\{ {{\text{discrim}}\left( {I_{3} ,x} \right),\alpha = 1} \right\} = 0 \\ &(I_{4} )_{{}} n = 6 \Rightarrow {\text{five-degree-of-freedom}} \\ &\left[ \begin{gathered} x^{5} + \left( {5\alpha - 10} \right)x^{4} + \left( {10\alpha^{2} - 36\alpha + 36} \right)x^{3} + \left( {10\alpha^{3} - 48\alpha^{2} + 84\alpha - 56} \right)x^{2} \hfill \\ + \left( {5\alpha^{4} - 28\alpha^{3} + 63\alpha^{2} - 70\alpha + 35} \right)x + \left( {\alpha^{5} - 6\alpha^{4} + 15\alpha^{3} - 20\alpha^{2} + 15\alpha - 6} \right) \hfill \\ \end{gathered} \right] = 0 \\ &\Rightarrow {\text{discrim}}\left( {I_{4} ,x} \right) = \left( \begin{gathered} {6912}\alpha^{10} - {69120}\alpha^{9} + {311040}^{8} - {829440}\alpha^{7} + {1451520}\alpha^{6} \hfill \\ - {1741824}\alpha^{5} + {1451520}\alpha^{4} - {829440}\alpha^{3} + {311040}\alpha^{2} - {69120}\alpha + {6912} \hfill \\ \end{gathered} \right) \\ &\Rightarrow {\text{eval}}\left\{ {{\text{discrim}}\left( {I_{4} ,x} \right),\alpha = 1} \right\} = 0 \\ &(I_{5} )n = 7 \Rightarrow {\text{six-degree-of-freedom}} \\ &\left[ \begin{gathered} x^{6} + (6\alpha - 12)x^{5} + (15\alpha^{2} - 55\alpha + 55)x^{4} + (20\alpha^{3} - 100\alpha^{2} + 180\alpha - 120)x^{3} \hfill \\ + (15\alpha^{4} - 90\alpha^{3} + 216\alpha^{2} - 252\alpha + 126)x^{2} + (6\alpha^{5} - 40\alpha^{4} + 112\alpha^{3} - 168\alpha^{2} + 140\alpha - 56)x \hfill \\ + (\alpha^{6} - 7\alpha^{5} + 21\alpha^{4} - 35\alpha^{3} + 35\alpha^{2} - 21\alpha + 7) \hfill \\ \end{gathered} \right] = 0 \\ &\Rightarrow {\text{discrim}}\left( {I_{5} ,x} \right) = \left( \begin{gathered} - {153664}\alpha^{15} + {2304960}\alpha^{14} - {16134720}\alpha^{13} + {69917120}\alpha^{12} - {209751360}\alpha^{11} \hfill \\ + {461452992}\alpha^{10} - {769088320}\alpha^{9} + {988827840}\alpha^{8} - {988827840}\alpha^{7} + {769088320}\alpha^{6} \hfill \\ - {461452992}\alpha^{5} + {209751360}\alpha^{4} - {69917120}\alpha^{3} + {16134720}\alpha^{2} - {2304960}\alpha + {153664} \hfill \\ \end{gathered} \right) \\ &\Rightarrow {\text{eval}}\left\{ {{\text{discrim}}\left( {I_{5} ,x} \right),\alpha = 1} \right\} = 0 \\ \end{aligned} $$
(44)

The direct approach derived from the computation of the load–frequency curves based on the mass and the stiffness matrix is equivalent to the method based on the resolution of the difference equation with the n-1 branches of solutions:

$$ \Omega^{4} - 2\left( {2 - \alpha } \right)\Omega^{2} + \alpha^{2} + 4\left( {1 - \alpha } \right)\sin^{2} \frac{p\pi }{n} = 0 \Rightarrow {\text{for}}\;\;p \in \left\{ {1;2;...;n - 1} \right\} $$
(45)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoumi, S., Shakhlavi, S.J., Challamel, N. et al. Divergence and flutter instabilities of a non-conservative axial lattice under non-reciprocal interactions. Arch Appl Mech 94, 187–203 (2024). https://doi.org/10.1007/s00419-023-02515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02515-z

Keywords

Navigation