Skip to main content
Log in

X-Ray Astronomy and Close Binary Systems

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The discovery in 1962 of the compact source Sco X-1, the first X-ray source located outside the Solar System, marked a new (“golden”) era in the study of close binary systems (CBSs). Soon after, accreting neutron stars and first black hole candidates in CBSs were discovered. The ability to “weigh” neutron stars and black holes in CBSs made it possible to distinguish accreting black holes from neutron stars. The theory of accretion onto relativistic objects in CBSs has been developed, as well as the theory of the evolution of CBSs with mass exchange up to the latest stages, including binary black holes and neutron stars. CBSs have become the cutting edge of astrophysics. Subsequent observations of gravitation waves and observations with the EHT intercontinental radio interferometer with an angular resolution of ~10–5 arcsec made it possible to finally prove the existence of black holes in the Universe. Thus, the modern triumph of black holes has largely been due to the development of the science of CBSs. This paper is based on a presentation made in the astrophysical memorial seminar “Novelties in Understanding the Evolution of Binary Stars”, dedicated to the 90th anniversary of Professor M.A. Svechnikov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. R. Giacconi, H. Gursky, F. R. Paolini, and B. B. Rossi, Phys. Rev. Lett. 9, 439 (1962).

    Article  ADS  Google Scholar 

  2. A. M. Cherepashchuk, T. S. Khruzina, and A. I. Bogomazov, Mon. Not. R. Astron. Soc. 508, 1389 (2021).

    Article  ADS  Google Scholar 

  3. A. M. Cherepashchuk, T. S. Khruzina, and A. I. Bogomazov, Astron. Rep. 66, 348 (2022).

    Article  ADS  Google Scholar 

  4. A. V. Tutukov and A. M. Cherepashchuk, Phys. Usp. 63, 209 (2020).

    Article  ADS  Google Scholar 

  5. H. N. Russell, Astrophys. J. 108, 388R (1948).

    Article  ADS  Google Scholar 

  6. M. A. Svechnikov, Uch. Zap. UrGU, Ser. Astron., No. 5 (88) (1969).

  7. G. N. Dremova and M. A. Svechnikov, Astrofizika 50, 299 (2007).

    Google Scholar 

  8. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. P. P. Parenago and A. G. Masevich, Tr. GAISh 20, 81 (1950).

    Google Scholar 

  10. J. A. Crawford, Astrophys. J. 121, 71 (1955).

    Article  ADS  Google Scholar 

  11. D. C. Morton, Astrophys. J. 132, 146 (1960).

    Article  ADS  Google Scholar 

  12. B. Paczyński, Acta Astron. 16, 231 (1966).

    ADS  Google Scholar 

  13. L. I. Snezhko, Perem. Zvezdy 16, 253 (1967).

    ADS  Google Scholar 

  14. R. Kippenhahn and A. Weigert, Zeitschr. Astrophys. 65, 251 (1967).

    ADS  Google Scholar 

  15. Ya. B. Zel’dovich, Sov. Phys. Dokl. 9, 195 (1964).

    ADS  Google Scholar 

  16. E. E. Salpeter, Astrophys. J. 140, 796 (1964).

    Article  ADS  Google Scholar 

  17. I. D. Novikov and Ya. B. Zel’dovich, Nuovo Cim. S-uppl. 4, 810 (1966).

    Google Scholar 

  18. E. W. Gottlieb, E. L. Wright, and W. Liller, Astrophys. J. 195L, 33 (1975).

    Article  ADS  Google Scholar 

  19. A. P. Cowley and D. Crampton, Astrophys. J. 201L, 65 (1975).

    Article  ADS  Google Scholar 

  20. N. I. Shakura, Sov. Astron. 16, 756 (1972).

    ADS  Google Scholar 

  21. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  22. J. E. Pringle and M. J. Rees, Astron. Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  23. I. D. Novikov and K. S. Thorne, in Black Holes, Ed. by C. de Witt and B. S. de Witt (Gordon and Breach, New York, 1973), p. 343.

    Google Scholar 

  24. A. V. Tutukov and L. R. Yungel’son, Nauch. Inform. Astrosov. AN SSSR 27 (58), 70 (1973).

    Google Scholar 

  25. E. P. J. van den Heuvel, in Structure and Evolution of Close Binary System, Ed. by P. P. Eggleton, B. Motton, and J. Whelan (Reidel, Dordrecht, 1976), p. 35.

    Google Scholar 

  26. R. E. Wilson and E. J. Devinney, Astrophys. J. 166, 605 (1971).

    Article  ADS  Google Scholar 

  27. A. M. Cherepashchuk, Sov. Astron. 19, 47 (1975).

    ADS  Google Scholar 

  28. A. M. Cherepashchuk, Yu. N. Efremov, N. E. Kurochkin, N. I. Shakura, and R. A. Sunyaev, Inform. Bull. Var. Stars, No. 720, 1 (1972).

  29. J. N. Bahcall and N. A. Bahcall, Astrophys. J. 178L, 1 (1972).

    Article  ADS  Google Scholar 

  30. V. M. Lyutyi, R. A. Syunyaev, and A. M. Cherepashchuk, Sov. Astron. 17, 1 (1973).

    ADS  Google Scholar 

  31. B. L. Webster and P. Murdin, Nature (London, U.K.) 235, 37 (1972).

    Article  ADS  Google Scholar 

  32. B. Paczynski, Acta Astron. 17, 355 (1967).

    ADS  Google Scholar 

  33. A. M. Cherepashchuk, Close Binary Stars, Parts 1, 2 (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  34. A. M. Cherepashchuk, N. A. Katysheva, T. S. Khruzina, and S. Yu. Shugarov, Highly Evolved Close Binary Stars: Catalog (Gordon and Breach, Brusseles, 1996).

  35. B. E. Tetarenko, G. R. Sivakoff, C. O. Heinke, and J. C. Gladstone, Astrophys. J. Suppl. 222, 15 (2016).

    Article  Google Scholar 

  36. A. M. Cherepashchuk, Mon. Not. R. Astron. Soc. 194, 761 (1981).

    Article  ADS  Google Scholar 

  37. B. Margon, Ann. Rev. Astron. Astrophys. 22, 507 (1984).

    Article  ADS  Google Scholar 

  38. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  39. V. G. Kornilov and V. M. Lipunov, Sov. Astron. 27, 163 (1983).

    ADS  Google Scholar 

  40. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 288, 245 (1997).

    Article  ADS  Google Scholar 

  41. B. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).

  42. A. M. Cherepashchuk, Phys. Usp. 59, 910 (2016).

    Article  ADS  Google Scholar 

  43. A. V. Tutukov and A. M. Cherepashchuk, Astron. Rep. 61, 833 (2017).

    Article  ADS  Google Scholar 

  44. B. Abbott et al., Astrophys. J. 848L, 12A (2017).

    ADS  Google Scholar 

  45. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov. Astron. Lett. 10, 177 (1984).

    ADS  Google Scholar 

  46. R. Giacconi, H. Gursky, E. Kellogg, E. Schreier, and H. Tananbaum, Astrophys. J. 167L, 67 (1971).

    Article  ADS  Google Scholar 

  47. H. Tananbaum, H. Gursky, E. M. Kellogg, R. Levinson, E. Schreier, and R. Giacconi, Astrophys. J. 174L, 143 (1972).

    Article  ADS  Google Scholar 

  48. H. Tananbaum, E. Kellogg, H. Gursky, S. Murray, E. Schreier, and R. Giacconi, Astrophys. J. 165L, 37 (1971).

    Article  ADS  Google Scholar 

  49. N. E. Kurochkin, Perem. Zvezdy 18, 425 (1972).

    ADS  Google Scholar 

  50. M. K. Abubekerov, E. A. Antokhina, and A. M. Cherepashchuk, Astron. Rep. 48, 550 (2004).

    Article  ADS  Google Scholar 

  51. J. C. A. Miller-Jones, Sci. 371, 1046 (2021).

    Article  ADS  Google Scholar 

  52. A. Cherepashchuk, K. Postnov, S. Molkov, E. Antokhina, and A. Belinski, New Astron. Rev. 89, 101542 (2020).

  53. A. M. Cherepashchuk, A. A. Belinski, A. V. Dodin, and K. A. Postnov, Mon. Not. R. Astron. Soc. 507L, 19 (2021).

    Article  ADS  Google Scholar 

  54. W. J. Roberts, Astrophys. J. 187, 575 (1974).

    Article  ADS  Google Scholar 

  55. A. M. Cherepashchuk, Sov. Astron. Lett. 7, 401 (1981).

    ADS  Google Scholar 

  56. I. I. Antokhin, A. M. Cherepashchuk, E. A. Antokhina, and A. M. Tatarnikov, Astrophys. J. 926, 123 (2022).

    Article  ADS  Google Scholar 

  57. A. Veledina, F. Muleri, J. Poutanen, et al., arXiv: 2303.01174 (2023).

  58. J. E. McClintock and R. A. Remillard, Astrophys. J. 308, 110 (1986).

    Article  ADS  Google Scholar 

  59. A. M. Cherepashchuk, N. A. Katysheva, T. S. Khruzina. S. Yu. Shugarov, A. M. Tatarnikov, M. A. Burlak, and N. I. Shatsky, Mon. Not. R. Astron. Soc. 483, 1067 (2019).

    Article  ADS  Google Scholar 

  60. K. El-Badry et al., arXiv: 2209.06833 (2022).

  61. G. S. Bisnovatyi-Kogan and B. V. Komberg, Sov. Astron. 18, 217 (1974).

    ADS  Google Scholar 

  62. C. L. Fryer and V. Kalogera, Astrophys. J. 554, 548 (2001).

    Article  ADS  Google Scholar 

  63. K. Belczynski, G. Wiktorowicz, C. L. Fryer, et al., Astrophys. J. 757, 91 (2012).

    Article  ADS  Google Scholar 

  64. S. E. Woosley, T. Sukhbold, and H.-T. Janka, Astrophys. J. 896, 56 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Scientific Foundation (project 23-12-00092), as well as by the scientific and educational school of M.V. Lomonosov Moscow State University “Fundamental and applied space research” and the Development Program of M.V. Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Cherepashchuk.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Seifina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepashchuk, A.M. X-Ray Astronomy and Close Binary Systems. Astron. Rep. 67, 856–866 (2023). https://doi.org/10.1134/S1063772923090020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923090020

Keywords:

Navigation