Skip to main content
Log in

The Role of Binary Stars in Understanding the Physics and Evolution of Stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The diversity of close binary stars (CBSs) and the rich manifestation of their activity as a result of the interaction of stellar components have turned their observed family into a very developed and effective tool for studying the evolution of stars. This review presents the main features of modern ideas about the evolution of CBSs from their origin to the formation of finite compact remnants of components: degenerate dwarfs, neutron stars and stellar black holes. The main phenomena related to their interaction with each other and accompanying the process of fusion of compact components of the CBS are also listed, considering the effect of common envelopes, radiation of gravitational waves in cataclysmic and X-ray binaries, supernovae (SN Ia, SN Ib), gamma-bursters and other systems. The paper is based on a report presented at the astrophysical memorial seminar “Novelties in Understanding the Evolution of Binary Stars,” dedicated to the 90th anniversary of Professor M.A. Svechnikov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. H. Batten, Binary and Miltiple Systems of Stars, Vol. 51 of International Series of Monographs in Natural Philosophy (Pergamon, Oxford, 1973).

  2. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 241102 (2016).

  3. A. V. Tutukov and A. M. Cherepashchuk, Phys. Usp. 63, 209 (2020).

    Article  ADS  Google Scholar 

  4. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, The Scenario Machine: Binary Star Population Synthesis (Harwood Academic, Amsterdam, 1996).

    Google Scholar 

  5. M. A. Svechnikov, Uch. Zap. UrGU, Ser. Astron., No. 5 (88) (1969).

  6. Z. T. Kraicheva, E. I. Popova, A. V. Tutukov, and L. R. Yungel’son, Sov. Astron. 22, 670 (1978).

    ADS  Google Scholar 

  7. E. I. Popova, A. V. Tutukov, and L. R. Yungel’son, Sov. Astron. Lett. 8, 160 (1982).

    ADS  Google Scholar 

  8. V. Trimble, Observatory 98, 163 (1978).

    ADS  Google Scholar 

  9. Z. T. Kraicheva, E. I. Popova, A. V. Tutukov, and L. R. Yungel’son, Sov. Astron. 23, 290 (1979).

    ADS  Google Scholar 

  10. M. A. Svechnikov and T. A. Taidakova, Byull. Abastum. Astrofiz. Observ. 58, 305 (1985).

    ADS  Google Scholar 

  11. S. V. Vereshchagin, Z. T. Kraicheva, E. I. Popova, A. V. Tutukov, and L. R. Yungel’son, Nauch. Inform. Astron. Sov. AN SSSR 63, 3 (1987).

    Google Scholar 

  12. M. A. Svechnikov and E. F. Kuznetsova, Catalog of Approximate Photometric and Absolute Elements of Eclipsing Variable Stars (UrGU, Ekaterinburg, 1990), Vols. 1, 2 [in Russian]; VizieR Online Data Catalog 5124 (2004).

  13. E. A. Avvakumova, O. Yu. Malkov, and A. Y. Kniazev, Astron. Nachr. 334, 860 (2013).

    Article  ADS  Google Scholar 

  14. A. E. Piskunov, A. V. Tutukov, and L. R. Yungel’son, Sov. Astron. Lett. 5, 44 (1979).

    ADS  Google Scholar 

  15. J. M. Scalo, in Protostars and Planets II, Ed. by D. C. Black and M. S. Matthews (Univ. Arizona Press, Tucson, AZ, 1985), p. 201.

  16. A. V. Tutukov and B. M. Shustov, Astrofizika 63, 631 (2020).

    Google Scholar 

  17. A. Duquennoy and M. Mayor, Astron. Astrophys. 248, 485 (1991).

    ADS  Google Scholar 

  18. H. Kobulnicky and C. Fryer, Astron. Astrophys. 670, 747 (2007).

    Google Scholar 

  19. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (LENAND, Moscow, 2019) [in Russian].

    Google Scholar 

  20. A. V. Tutukov, Sov. Astron. 31, 663 (1987).

    ADS  Google Scholar 

  21. A. A. Tokovinin, Mon. Not. R. Astron. Soc. 389, 925 (2008).

    Article  ADS  Google Scholar 

  22. B. Paczinski, in Late Stages of Stellar Evolution, Ed. by R. J. Tayler and J. E. Hesser, IAU Symp. 66, 62 (1974).

  23. I. Iben and A. Tutukov, Astrophys. J. 284, 719 (1984).

    Article  ADS  Google Scholar 

  24. K. Nomoto, in Type I Supernovae, Proceedings of the Texas Workshop, Austin, TX, March 17–19, 1980 (Univ. Texas, Austin, TX, 1980), p. 164.

  25. E. P. J. van den Heuvel, Bull. Astron. Inst. Netherland 19, 309 (1968).

    ADS  Google Scholar 

  26. A. M. Cherepashchuk, Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    MATH  Google Scholar 

  27. L. R. Yungel’son and A. G. Masevich, Itogi Nauki Tekh., Ser. Astron. (1989).

  28. G. S. Bisnovatyi-Kogan, Stellar Physics (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  29. K. A. Postnov and L. R. Yungelson, Liv. Rev. Relativ. 17, 3 (2014).

    Article  ADS  Google Scholar 

  30. V. M. Lipunov and K. A. Postnov, Sov. Astron. 31, 228 (1987).

    ADS  Google Scholar 

  31. I. Iben, Jr. and A. V. Tutukov, Astrophys. J. 418, 343 (1993).

    Article  ADS  Google Scholar 

  32. B. F. Williams, T. J. Hillis, J. W. Murphy, K. Gilbert, J. J. Dalcanton, and A. E. Dolphin, Astrophys. J. 860, 39 (2018).

    Article  ADS  Google Scholar 

  33. E. D. Kovetz, I. Cholis, P. Breysse, and M. Kamionkowski, Phys. Rev. D 95, 103010 (2017).

  34. A. V. Tutukov, Astron. Rep. 63, 79 (2019).

    Article  ADS  Google Scholar 

  35. A. V. Tutukov and A. M. Cherepashchuk, Astron. Rep. 61, 833 (2017).

    Article  ADS  Google Scholar 

  36. A. V. Tutukov and L. R. Yungelson, Acta Astron. 29, 665 (1979).

    ADS  Google Scholar 

  37. A. Kashi, Galaxies 6, 82 (2018).

    Article  ADS  Google Scholar 

  38. A. Skumanich, Astrophys. J. 171, 565 (1972).

    Article  ADS  Google Scholar 

  39. M. M. Shara, D. Prialnik, Y. Hillman, and A. Kovetz, Astrophys. J. 860, 110 (2018).

    Article  ADS  Google Scholar 

  40. A. G. Massevitch and A. V. Tutukov, Nauch. Inform. 29, 3 (1974).

    ADS  Google Scholar 

  41. A. V. Tutukov and L. R. Yungelson, in The Nature of Symbiotic Stars, Proceedings of the 17th Colloquium, Saint-Michel-l’Observatoire, Alpes-de-Haute-Provence, France, August 26–28, 1981 (D. Reidel, Dordrecht, 1982), p. 283.

  42. I. Iben, Jr. and A. V. Tutukov, Astrophys. J. 284, 719 (1984).

    Article  ADS  Google Scholar 

  43. I. Iben, Jr. and A. V. Tutukov, Astrophys. J. Suppl. 54, 335 (1984).

    Article  Google Scholar 

  44. A. V. Tutukov and L. R. Yungelson, Abastum. Astrofiz. Obs. Byull., No. 58, 333 (1985).

  45. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  46. A. Einstein, Sitzungsber. Kön. Preuß. Akad. Wissensch. (Berlin) 1, 154 (1918).

    Google Scholar 

  47. V. M. Lipunov, Phys. Usp. 59, 918 (2016).

    Article  ADS  Google Scholar 

  48. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astron. Astrophys. 310, 489 (1996).

    ADS  Google Scholar 

  49. I. Iben, Jr., A. V. Tutukov, and L. R. Yungelson, Astrophys. J. 475, 291 (1997).

    Article  ADS  Google Scholar 

  50. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 51, 291 (2007).

    Article  ADS  Google Scholar 

  51. K. Nomoto, Y. Kamiya, and N. Nakasato, in Binary Paths to Type Ia Supernovae Explosions, Proc. IAU Symp. 281, 253 (2013).

  52. S. Dhawan, M. Bulla, A. Goobar, R. Lunnan, et al., Mon. Not. R. Astron. Soc. 480, 1445 (2018).

    Article  ADS  Google Scholar 

  53. A. Bogomazov and A. Tutukov, Astron. Rep. 53, 214 (2009).

    Article  ADS  Google Scholar 

  54. K. J. Shen, D. Kasen, B. J. Miles, and D. M. Townsley, Astrophys. J. 854, 52 (2018).

    Article  ADS  Google Scholar 

  55. R. Foley, S. Hoffmann, L. Macri, A. G. Riess, et al., arXiv: 1806.08359 [astro-ph.HE] (2018).

  56. C. Ashall, P. Mazzali, M. Sasdelli, and S. J. Prentice, Mon. Not. R. Astron. Soc. 460, 3529 (2016).

    Article  ADS  Google Scholar 

  57. M. A. Tucker, B. J. Shappee, and J. P. Wisniewski, Astrophys. J. Lett. 872, 22 (2019).

    Article  ADS  Google Scholar 

  58. G. Dimitriadis, R. J. Foley, A. Rest, D. Kasen, et al. Astrophys. J. Letters 870, L1 (2019).

    Article  ADS  Google Scholar 

  59. A. V. Tutukov and L. R. Yungelson, Mon. Not. R. Astron. Soc. 260, 675 (1993).

    Article  ADS  Google Scholar 

  60. K. S. Thorne and A. N. Zytkow, Astrophys. J. 212, 832 (1977).

    Article  ADS  Google Scholar 

  61. B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, et al., Phys. Rev. X 9, 031040 (2019).

  62. H. Perets, Astrophys. J. Lett. 727, L3 (2011).

    Article  ADS  Google Scholar 

  63. H. Ochiai, M. Nagasawa, and S. Ida, Astrophys. J. 790, 92 (2014).

    Article  ADS  Google Scholar 

  64. S. V. Vereshchagin, M. D. Sizova, and B. M. Shustov, INASAN Sci. Rep. 5 (3), 85 (2020).

    Google Scholar 

  65. M. S. Angelo, J. F. C. Santos, F. F. S. Maia, and W. J. B. Corradi, Mon. Not. R. Astron. Soc. 510, 5695 (2022).

    Article  ADS  Google Scholar 

  66. J. Casado, Astron. Rep. 65, 755 (2021).

    Article  ADS  Google Scholar 

  67. B. A. Vorontsov-Velyaminov, Astron. Astrophys. Suppl. Ser. 28, 1 (1977).

    ADS  Google Scholar 

  68. R. den Hartog, Mon. Not. R. Astron. Soc. 284, 286 (1997).

    Article  ADS  Google Scholar 

  69. R. Chan and S. Junqueira, Astron. Astrophys. 366, 418 (2001).

    Article  ADS  Google Scholar 

  70. M. Honma, Astrophys. J. 516, 693 (1999).

    Article  ADS  Google Scholar 

  71. T. J. Cox and A. Loeb, Mon. Not. R. Astron. Soc. 386, 461 (2008).

    Article  ADS  Google Scholar 

  72. X.-N. Su, J.-W. Xie, J.-L. Zhou, and Ph. Thebault, Astron. J. 162, 272 (2021).

    Article  ADS  Google Scholar 

  73. B. P. Kondratyev and V. S. Kornoukhov, Astron. Rep. 66, 1063 (2022).

    Article  ADS  Google Scholar 

  74. A. Wolszczan, Bull. Am. Astron. Soc. 24, 969 (1992).

    ADS  Google Scholar 

  75. E. A. Behrens, S. M. Ransom, D. R. Madison, Z. Arzoumanian, et al., Astrophys. J. Lett. 893, L8 (2020).

    Article  ADS  Google Scholar 

  76. A. V. Tutukov, G. N. Dremova, and V. V. Dremov, Astron. Rep. 64, 936 (2020).

    Article  ADS  Google Scholar 

  77. A. V. Tutukov, M. D. Sizova, and S. V. Vereshchagin, Astron. Rep. 64, 827 (2020).

    Article  ADS  Google Scholar 

  78. A. V. Tutukov, N. V. Chupina, and S. V. Vereshchagin, Astron. Rep. 66, 1028 (2022).

    Article  ADS  Google Scholar 

  79. J. Guillochon and A. Loeb, Astrophys. J. 806, 124 (2015).

    Article  ADS  Google Scholar 

  80. G. N. Dremova, V. V. Dremov, and A. V. Tutukov, Astron. Rep. 61, 573 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author sincerely thanks G.N. Dremova for assistance in preparing this article for publication.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tutukov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V. The Role of Binary Stars in Understanding the Physics and Evolution of Stars. Astron. Rep. 67, 867–875 (2023). https://doi.org/10.1134/S1063772923090135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923090135

Keywords:

Navigation