Skip to main content
Log in

Compact objects by extended gravitational decoupling in f(GT) gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we investigate the anisotropic interior spherically symmetric solutions by utilizing the extended gravitational decoupling method in the background of f(GT) gravity, where G and T signify the Gauss–Bonnet term and trace of the stress-energy tensor, respectively. The anisotropy in the interior geometry arises with the inclusion of an additional source in the isotropic configuration. In this technique, the temporal and radial potentials are decoupled which split the field equations into two independent sets. Both sets individually represent the isotropic and anisotropic configurations, respectively. The solution corresponding to the first set is determined by using the Krori–Barua metric potentials, whereas the second set contains unknowns which are solved with the help of some constraints. The ultimate anisotropic results are evaluated by combining the solutions of both distributions. The influence of decoupling parameter is examined on the matter variables as well as anisotropic factor. We illustrate the viable and stable features of the constructed solutions by using energy constraints and three stability criteria, respectively. Finally, we conclude that the obtained solutions are viable as well stable for the whole domain of the decoupling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T S Van Albada and R Sancisi Philos. Trans. Royal Soc. A 320 447 (1986)

    ADS  Google Scholar 

  2. R A Swaters, B F Madore and M Trewhella Astrophys. J. 531 L107 (2000)

    Article  ADS  Google Scholar 

  3. J D Barrow, R Maartens and C G Tsagas Phys Rep. 449 131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. J Neveu, V Ruhlmann-Kleider, P Astier, M Besançon, J Guy, A Möller and E Babichev Astron Astrophys. 600 A40 (2017)

    Article  ADS  Google Scholar 

  5. N Deruella Nucl. Phys. B 327 253 (1989)

    Article  ADS  Google Scholar 

  6. N Deruella and L Farina-Busto Phys. Rev. D 41 3696 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  7. B Bhawal and S Kar Phys. Rev. D 46 2464 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. N Deruella and T Doležel Phys. Rev. D 10 103502 (2000)

    Article  ADS  Google Scholar 

  9. S Nojiri and S D Odintsov Phys. Lett. B 631 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. S Capozziello, A Stabile and A Troisi Class. Quantum Gravit. 25 085004 (2008)

    Article  ADS  Google Scholar 

  11. S Capozziello, E De Filippis and V Salzano Mon. Not. R. Astron. Soc. 394 947 (2009)

    Article  ADS  Google Scholar 

  12. S Nojiri and S D Odintsov Phys. Rep. 505 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. O Bertolami, C G Boehmer, T Harko and F S N Lobo Phys. Rev. D 75 104016 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    Article  ADS  Google Scholar 

  15. M Sharif and A Ikram Eur. Phys. J. C 76 640 (2016)

    Article  ADS  Google Scholar 

  16. M Sharif and A Ikram Phys. Dark Universe 17 1 (2017)

    Article  ADS  Google Scholar 

  17. G Mustafa, X Tie-Cheng and M F Shamir Ann. Phys. 413 168059 (2020)

    Article  Google Scholar 

  18. M Sharif and K Hassan Pramana 96 50 (2022)

    Article  ADS  Google Scholar 

  19. M Sharif and K Hassan Eur. Phys. J. Plus 137 1380 (2022)

    Article  Google Scholar 

  20. M Sharif and K Hassan Mod. Phys. Lett. A 37 2250027 (2022)

    Article  ADS  Google Scholar 

  21. M Sharif and K Hassan Eur. Phys. J. Plus 138 787 (2023)

    Article  Google Scholar 

  22. M Sharif and K Hassan Chin. J. Phys 77 1479 (2022)

    Article  Google Scholar 

  23. M Sharif and K Hassan Chin. J. Phys 84 152 (2023)

    Article  Google Scholar 

  24. M Ruderman Annu. Rev. Astron. Astrophys. 10 427 (1972)

    Article  ADS  Google Scholar 

  25. A I Sokolov J. Exp. Theor. Phys 49 1137 (1980)

    Google Scholar 

  26. R Kippenhahn and A Weigert Structure and Evolution (Berlin: Springer) (1990)

    Book  MATH  Google Scholar 

  27. L Herrera and N O Santos Phys. Rep. 286 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. T Harko and M K Mak Ann. Phys. 11 3 (2002)

    Article  Google Scholar 

  29. K Dev and M Gleiser Gen. Relativ. Gravit. 34 1793 (2002)

    Article  Google Scholar 

  30. B C Paul and R Deb Astrophys. Space Sci. 354 421 (2014)

    Article  ADS  Google Scholar 

  31. J D V Arbañil and M Malheiro J. Cosmol. Astropart. Phys. 11 012 (2016)

    Article  ADS  Google Scholar 

  32. A Errehymy, Y Khedif and M Daoud Eur. Phys. J. C 81 266 (2021)

    Article  ADS  Google Scholar 

  33. S K Maurya, S D Maharaj, J Kumar and A K Prasad Gen. Relativ. Gravit. 51 86 (2019)

    Article  ADS  Google Scholar 

  34. G Abbas, D Momeni, M Aamir Ali, R Myrzakulov and S Qaisar Astrophys. Space Sci. 357 158 (2015)

    Article  ADS  Google Scholar 

  35. M Ilyas Eur. Phys. J. C 78 757 (2018)

    Article  ADS  Google Scholar 

  36. M F Shamir and S Zia Eur. Phys. J. C 77 448 (2017)

    Article  ADS  Google Scholar 

  37. J Ovalle Phys. Rev. D 95 104019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. J Ovalle, R Casadio, R da Rocha, A Sotomayor and Z Stuchlík Eur. Phys. J. C 78 960 (2018)

    Article  ADS  Google Scholar 

  39. L Gabbanelli, Á Rincón and C Rubio Eur. Phys. J. C 78 370 (2018)

    Article  ADS  Google Scholar 

  40. M Estrada and F Tello-Ortiz Eur. Phys. J. Plus 133 453 (2018)

    Article  Google Scholar 

  41. K N Singh, S K Maurya, M K Jasim and F Rahaman Eur. Phys. J. C 79 851 (2019)

    Article  ADS  Google Scholar 

  42. S Hensh and Z Stuchlík Eur. Phys. J. C 79 834 (2019)

    Article  ADS  Google Scholar 

  43. M Sharif and S Saba Chin. J. Phys. 59 481 (2019)

    Article  Google Scholar 

  44. M Sharif and S Saba Chin. J. Phys. 63 348 (2020)

    Article  Google Scholar 

  45. M Sharif and A Waseem Chin. J. Phys. 60 426 (2019)

    Article  Google Scholar 

  46. M Sharif and A Waseem Ann. Phys. 405 14 (2019)

    Article  ADS  Google Scholar 

  47. M Sharif and A Majid Chin. J. Phys. 68 406 (2020)

    Article  Google Scholar 

  48. M Sharif and A Majid Phys. Dark Univ. 30 100610 (2020)

    Article  Google Scholar 

  49. S K Maurya, A Errehymy, K N Singh, F Tello-Ortiz and M Daoud Phys. Dark Univ. 30 100640 (2020)

    Article  Google Scholar 

  50. S K Maurya, F Tello-Ortiz and S Ray Phys. Dark Univ. 31 100753 (2021)

    Article  Google Scholar 

  51. M Sharif and T Naseer Chin. J. Phys. 73 179 (2021)

    Article  Google Scholar 

  52. T Naseer and M Sharif Universe 8 62 (2022)

    Article  ADS  Google Scholar 

  53. M Sharif and T Naseer Eur. Phys. J. Plus 137 1304 (2022)

    Article  Google Scholar 

  54. M Sharif and K Hassan Eur. Phys. J. Plus 137 997 (2022)

    Article  Google Scholar 

  55. M Sharif and K Hassan Int. J. Geom. Methods Mod. Phys. 19 2250150 (2022)

    Article  Google Scholar 

  56. M Sharif and K Hassan Int. J. Geom. Methods Mod. Phys 20 2350100 (2023)

    Article  Google Scholar 

  57. K Hassan and M Sharif Universe 9 165 (2023)

    Article  ADS  Google Scholar 

  58. J Ovalle Phys. Lett. B 788 213 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. E Contreras and P Bargueño Class. Quantum Gravit. 36 215009 (2019)

    Article  ADS  Google Scholar 

  60. M Sharif and Q Ama-Tul-Mughani Ann. Phys. 415 168122 (2020)

    Article  Google Scholar 

  61. M Sharif and Q Ama-Tul-Mughani Chin. J. Phys. 65 207 (2020)

    Article  Google Scholar 

  62. M Sharif and S Saba Int. J. Mod. Phys. D 29 2050041 (2020)

    Article  ADS  Google Scholar 

  63. J Schutz and F Bernard Phys. Rev. D 2 2762 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  64. M F Shamir and M Ahmad Eur. Phys. J. C 77 674 (2017)

    Article  Google Scholar 

  65. M Sharif and A Naeem Int. J. Mod. Phys. A 35 2050121 (2020)

    Article  ADS  Google Scholar 

  66. K D Krori and J Barua J. Phys. A Math. Gen. 8 508 (1975)

    Article  ADS  Google Scholar 

  67. T Güver, P Wroblewski, L Camarota and F Özel Astrophys. J. 719 1807 (2010)

    Article  ADS  Google Scholar 

  68. H Abreu, H Hernandez and L A Nunez Class. Quantum Gravit. 24 4631 (2007)

    Article  ADS  Google Scholar 

  69. L Herrera Phys. Lett. A 165 206 (1992)

    Article  ADS  Google Scholar 

  70. H Heintzmann and W Hillebrandt Astron. Astrophys. 38 51 (1975)

    ADS  Google Scholar 

  71. H A Buchdahl Phys. Rev. 116 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  72. B V Ivanov Phys. Rev. D 65 104011 (2002)

    Article  ADS  Google Scholar 

  73. G Mustafa, M F Shamir, M Ahmad and A Ashraf Chin. J. Phys. 67 576 (2020)

    Article  Google Scholar 

  74. M Sharif and S Sadiq Eur. Phys. J. C 78 410 (2018)

    Article  ADS  Google Scholar 

  75. M Zubair and H Azmat Ann. Phys. 420 168248 (2020)

    Article  Google Scholar 

  76. S K Maurya, A Errehymy, M K Jasim, M Daoud, N Al-Harbi and A H Abdel-Aty Eur. Phys. J. C 83 317 (2023)

    Article  ADS  Google Scholar 

  77. Q Muneer and M Zubair Phys. Scr. 96 125015 (2021)

    Article  ADS  Google Scholar 

  78. M Sharif and F Furqan Indian J. Phys. 96 3375 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The extra curvature terms in f(GT) are given as

$$\begin{aligned}{} & {} T^{0\textsf {(Cor)}}_{0}=\frac{1}{8\pi }\bigg [-\frac{1}{2} G^2+\bigg (\frac{4 e^{-2 \vartheta } \varphi ''}{r^2}\nonumber \\{} & {} \quad -\frac{4 e^{-\vartheta } \varphi ''}{r^2}-\frac{2 e^{-\vartheta } \varphi '^2}{r^2}+\frac{2 e^{-\vartheta } \varphi ' \vartheta '}{r^2}\nonumber \\{} & {} \quad +\frac{2 e^{-2 \vartheta } \varphi '^2}{r^2}-\frac{6 e^{-2 \vartheta } \varphi ' \vartheta '}{r^2}\bigg )G+\bigg (\frac{12 e^{-2 \vartheta } \vartheta '}{r^2}-\frac{4 e^{-\vartheta }\vartheta '}{r^2}\bigg )G'\nonumber \\{} & {} \quad \bigg (-\frac{8 e^{-2 \vartheta }}{r^2}+\frac{8 e^{-\vartheta } }{r^2}\bigg )G''\bigg ], \end{aligned}$$
(A1)
$$\begin{aligned}{} & {} T^{1\textsf {(Cor)}}_{1}=\frac{1}{8 \pi } \bigg [\frac{1}{2} G^2+ \bigg (-\frac{4 e^{-2 \vartheta } \varphi ''}{r^2}+\frac{4 e^{-\vartheta } \varphi ''}{r^2}\nonumber \\{} & {} \quad +\frac{6 e^{-2 \vartheta } \varphi ' \vartheta '}{r^2}-\frac{2 e^{-\vartheta } \varphi ' \vartheta '}{r^2}\nonumber \\{} & {} \quad -\frac{2 e^{-2 \vartheta } \varphi '^2}{r^2}+\frac{2 e^{-\vartheta } \varphi '^2}{r^2}\bigg )G+ \bigg (\frac{12 e^{-2\vartheta } \varphi '}{r^2}-\frac{4 e^{-\vartheta } \varphi '}{r^2}\bigg )G'\bigg ], \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} \quad T^{2\textsf {(Cor)}}_{2}=\frac{1}{8 \pi }\bigg [\frac{1}{2} G^2+ \bigg (-\frac{4 e^{-2\vartheta } \varphi ''}{r^2}\nonumber \\{} & {} \quad +\frac{4 e^{-\vartheta } \varphi ''}{r^2}+\frac{2 e^{-\vartheta } \varphi '^2}{r^2}-\frac{2 e^{-2 \vartheta } \varphi '^2}{r^2}\nonumber \\{} & {} \quad -\frac{2 e^{-\vartheta } \varphi ' \vartheta '}{r^2}+\frac{6 e^{-2 \vartheta } \varphi ' \vartheta '}{r^2}\bigg )G+ \bigg (-\frac{6 e^{-2 \vartheta } \varphi ' \vartheta '}{r}+\frac{4 e^{-2 \vartheta } \varphi ''}{r}\nonumber \\{} & {} \quad +\frac{2 e^{-2 \vartheta } \varphi '^2}{r}\bigg )G'+ \frac{4 e^{-2 \vartheta } \varphi '}{r}G''\bigg ]. \end{aligned}$$
(A3)

The Gauss–Bonnet term as well as its higher derivatives turn out to be

$$\begin{aligned}{} & {} G=\frac{1}{r^2}\bigg [2 e^{-2 \vartheta } \left( \left( e^{\vartheta }-3\right) \vartheta '\varphi ' -\left( 2 \vartheta ''+\varphi '^2\right) \left( e^{\vartheta }-1\right) \right) \bigg ], \end{aligned}$$
(A4)
$$\begin{aligned}{} {} G'&=\frac{-1}{r^3}\bigg [2e^{-2 \vartheta } \big ( -\left( \vartheta ''\left( e^{\vartheta }-3\right) \right. \nonumber \\{} & {} \quad \left. -2\varphi '' \left( e^{\vartheta }-1\right) \right) r \varphi '+r \varphi '\left( e^{\vartheta }-6\right) \vartheta '^2\big )\nonumber \\{} & {} \quad +\vartheta ' \left( r \left( -\left( e^{\vartheta }-2\right) \right) \varphi '^2+2\varphi 'r \left( e^{\vartheta }-3\right) \right. \nonumber \\{} & {} \quad \left. -\left( 3 e^{\vartheta }-7\right) r \varphi ''\right) -2\varphi '^2 \big (e^{\vartheta } -1\big ) \end{aligned}$$
(A5)
$$\begin{aligned}{} & {} -2 \left( 2 \varphi ''-r \varphi ^{(3)}\right) \left( e^{\vartheta }-1\right) \bigg )\bigg ],\nonumber \\{} {} G''&=\frac{1}{r^4}\bigg [ 2e^{-2 \vartheta } \bigg (6-6 e^{\vartheta }+\varphi '^2 \big (r^2 \big (e^{\vartheta }-2\big ) \vartheta ''\big )\nonumber \\{} & {} \quad -2 \bigg (\varphi '' \big (6 \big (e^{\vartheta }-1\big )-r^2 \big (2 e^{\vartheta }\nonumber \\{} & {} -\quad 5\big ) \vartheta ''\big )+\varphi ''^2r^2 \big (e^{\vartheta }-1\big ) +r \big (-4 \varphi ^{(3)}\nonumber \\{} & {} \quad +r \varphi ^{(4)}\big ) \big (e^{\vartheta }-1\big )\bigg )+r^2 \big (e^{\vartheta }-12\big )\nonumber \\{} & {} \quad \times \varphi ' \vartheta '^3+\vartheta ' \bigg (\varphi ' \big (-3 r^2 \big (e^{\vartheta }-6\big ) \vartheta ''\nonumber \\{} & {} \quad +4 r^2 \big (e^{\vartheta }-2\big ) \varphi ''+6 \big (e^{\vartheta }-3\big )\big )-4\nonumber \\{} & {} \quad \times r\varphi '^2 \big (e^{\vartheta }-2\big ) +r \big ( \big (5 e^{\vartheta }-11\big )r \varphi ^{(3)}\nonumber \\{} & {} \quad -4 \varphi ''\big (3 e^{\vartheta }-7\big )\big )\bigg )-r \vartheta '^2 \bigg (4 r \big (e^{\vartheta }\nonumber \\{} & {} \quad -5\big ) \varphi ''-4 \big (e^{\vartheta }-6\big ) \varphi '\bigg )+r \big (e^{\vartheta }-4\big ) \varphi '^2\nonumber \\{} & {} \quad + \varphi ' r \bigg (r \big (\big (e^{\vartheta }-3\big ) \vartheta ^{(3)}-2 \varphi ^{(3)}\nonumber \\{} & {} \quad \times \big (e^{\vartheta }-1\big )\big )-4 \big (e^{\vartheta }-3\big ) \vartheta ''+8 \big (e^{\vartheta }-1\big ) \varphi ''\bigg )\bigg )\bigg ]. \end{aligned}$$
(A6)

Appendix B

The radial component of adiabatic index corresponding to solutions I and II are

$$\begin{aligned}\check{\Gamma _{r}}&=\{8 \pi (\psi +4 \pi ) r^2 \big (2 (L+X)-T^{0\textsf {(Cor)}}_{0} e^{r^2 X}\nonumber \\&\quad -T^{1\textsf {(Cor)}}_{1} e^{r^2 X}\big ) \big (\alpha \psi ^2+12 \pi \alpha \psi \nonumber \\&\quad +32 \pi ^2 \alpha +4 \pi \psi +2 \alpha \psi ^2 L r^4 X\nonumber \\&\quad +24 \pi \alpha \psi L r^4 X+64 \pi ^2 \alpha L r^4 X+12 \pi \psi L r^4 X\nonumber \\&\quad +64 \pi ^2 L r^4 X+4 \pi \psi r^4 X^2+\alpha \psi ^2 r^2 X\nonumber \\&\quad -\alpha \psi ^2 e^{r^2 X}+12 \pi \alpha \psi r^2 X-12 \pi \alpha \psi e^{r^2 X}\nonumber \\&\quad +32 \pi ^2 \alpha r^2 X-32 \pi ^2 \alpha e^{r^2 X}+4 \pi \psi r^2 X\nonumber \\&\quad -4 \pi \psi e^{r^2 X}+32 \pi ^2 r^2 X-32 \pi ^2 e^{r^2 X}\nonumber \\ {}&+\quad \pi \psi r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}+\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}\nonumber \\&\quad +32 \pi ^2\big )\}\{\big (\alpha \psi ^2+12 \pi \alpha \psi \nonumber \\&\quad +32 \pi ^2 \alpha +4 \pi \psi +2 \alpha \psi ^2 L r^2+24 \pi \alpha \psi L r^2\nonumber \\&\quad +64 \pi ^2 \alpha L r^2+12 \pi \psi L r^2+64 \pi ^2 L r^2\nonumber \\&\quad -2 \pi \psi r^2 T^{0\textsf {(Cor)}}_{0} e^{r^2 X}-2 \pi (3 \psi +16 \pi ) r^2 T^{1\textsf {(Cor)}}_{1} e^{r^2 X}\nonumber \\&\quad -\alpha \psi ^2 e^{r^2 X}-12 \pi \alpha \psi e^{r^2 X}\nonumber \\&\quad -32 \pi ^2 \alpha e^{r^2 X}+4 \pi \psi r^2 X-4 \pi \psi e^{r^2 X}\nonumber \\&\quad -32 \pi ^2 e^{r^2 X}+32 \pi ^2\big ) \big (-\alpha \psi ^2-12 \pi \alpha \psi \nonumber \\&\quad -32 \pi ^2 \alpha -4 \pi \psi -2 \alpha \psi ^2 L r^4 X-24 \pi \alpha \psi L r^4 X\nonumber \\&\quad -64 \pi ^2 \alpha L r^4 X+4 \pi \psi L r^4 X\nonumber \\&\quad +12 \pi \psi r^4 X^2+64 \pi ^2 r^4 X^2-\alpha \psi ^2 r^2 X\nonumber \\&\quad +\alpha \psi ^2 e^{r^2 X}-12 \pi \alpha \psi r^2 X+12 \pi \alpha \psi e^{r^2X}\nonumber \\&\quad -32 \pi ^2 \alpha r^2 X+32 \pi ^2 \alpha e^{r^2 X}-4 \pi \psi r^2X\nonumber \\&\quad +4 \pi \psi e^{r^2 X}-32 \pi ^2 r^2 X+32 \pi ^2 e^{r^2 X}\nonumber \\&\quad +\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}\nonumber \\&\quad +\pi \psi r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}-32 \pi ^2\big )\}^{-1}, \end{aligned}$$
(B1)
$$\begin{aligned} \check{\Gamma _{r}}&=\{8 \pi (\psi +4 \pi ) r^2 \big (2 (L+X)-T^{0\textsf {(Cor)}}_{0} e^{r^2 X}\nonumber \\&\quad -T^{1\textsf {(Cor)}}_{1} e^{r^2 X}\big ) \big (-\alpha \psi ^2-12 \pi \alpha \psi \nonumber \\&\quad -32 \pi ^2 \alpha +4 \pi \psi +12 \pi \psi L r^4 X+64 \pi ^2 L r^4 X\nonumber \\&\quad +2 \alpha \psi ^2 r^4 X^2+24 \pi \alpha \psi r^4 X^2\nonumber \\&\quad +64 \pi ^2 \alpha r^4 X^2+4 \pi \psi r^4 X^2-\alpha \psi ^2 r^2 X\nonumber \\&\quad +\alpha \psi ^2 e^{r^2 X}+32 \pi ^2 \alpha e^{r^2 X}+4 \pi \psi r^2 X\nonumber \\&\quad -12 \pi \alpha \psi r^2 X+12 \pi \alpha \psi e^{r^2 X}-32 \pi ^2 \alpha r^2 X\nonumber \\&\quad -4 \pi \psi e^{r^2 X}+32 \pi ^2 r^2 X-32 \pi ^2 e^{r^2 X}\nonumber \\&\quad +\pi \psi r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}+\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}\nonumber \\&\quad +32 \pi ^2\big )\}\{\big (-\alpha \psi ^2-12 \pi \alpha \psi \nonumber \\&\quad -32 \pi ^2 \alpha +4 \pi \psi +12 \pi \psi L r^2+64 \pi ^2 L r^2\nonumber \\&\quad -2 \pi \psi r^2 T^{0\textsf {(Cor)}}_{0} e^{r^2 X}-2 \pi (3 \psi +16 \pi ) r^2\nonumber \\&\quad \times T^{1\textsf {(Cor)}}_{1} e^{r^2 X}+2 \alpha \psi ^2 r^2 X+\alpha \psi ^2 e^{r^2 X}\nonumber \\&\quad +24 \pi \alpha \psi r^2 X+12 \pi \alpha \psi e^{r^2 X}+64 \pi ^2 \alpha r^2 X\nonumber \\&\quad +32 \pi ^2 \alpha e^{r^2 X}+4 \pi \psi r^2 X-4 \pi \psi e^{r^2 X}\nonumber \\&\quad -32 \pi ^2 e^{r^2 X}+32 \pi ^2\big ) \big (\alpha \psi ^2+12 \pi \alpha \psi +32 \pi ^2 \alpha \nonumber \\&\quad -4 \pi \psi +4 \pi \psi L r^4 X-2 \alpha \psi ^2 r^4 X^2\nonumber \\&\quad -24 \pi \alpha \psi r^4 X^2-64 \pi ^2 \alpha r^4 X^2+12 \pi \psi r^4 X^2\nonumber \\&\quad +64 \pi ^2 r^4 X^2+\alpha \psi ^2 r^2 X-\alpha \psi ^2 e^{r^2 X}\nonumber \\&\quad +12 \pi \alpha \psi r^2 X-12 \pi \alpha \psi e^{r^2 X}+32 \pi ^2 \alpha r^2 X\nonumber \\&\quad -32 \pi ^2 \alpha e^{r^2 X}-4 \pi \psi r^2 X+4 \pi \psi e^{r^2 X}\nonumber \\&\quad -32 \pi ^2 r^2 X+32 \pi ^2 e^{r^2 X}+\pi (3 \psi +16 \pi ) r^3 \nonumber \\&\quad \times e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}\nonumber \\&\quad +\pi \psi r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}-32 \pi ^2\big )\}^{-1}. \end{aligned}$$
(B2)

The expressions of radial velocity in the case of first and second solution are given as

$$\begin{aligned} \nu ^{2}_{r}&=\{\alpha \psi ^2+12 \pi \alpha \psi +32 \pi ^2 \alpha +4 \pi \psi +2 \alpha \psi ^2 L r^4 X\nonumber \\&\quad +24 \pi \alpha \psi L r^4 X+64 \pi ^2 \alpha L r^4 X\nonumber \\&\quad +12 \pi \psi L r^4 X+64 \pi ^2 L r^4 X+4 \pi \psi r^4 X^2+\alpha \psi ^2 r^2 X\nonumber \\&\quad -\alpha \psi ^2 e^{r^2 X}+12 \pi \alpha \psi r^2 X\nonumber \\&\quad -12 \pi \alpha \psi e^{r^2 X}+32 \pi ^2 \alpha r^2 X-32 \pi ^2 \alpha e^{r^2 X}\nonumber \\&\quad +4 \pi \psi r^2 X-4 \pi \psi e^{r^2 X}+32 \pi ^2 r^2 X\nonumber \\&\quad -32 \pi ^2 e^{r^2 X}+\pi \psi r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}\nonumber \\&\quad +\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}+32 \pi ^2\}\{-\alpha \psi ^2\nonumber \\&\quad -12 \pi \alpha \psi -32 \pi ^2 \alpha -4 \pi \psi -2 \alpha \psi ^2 L r^4 X\nonumber \\&\quad -24 \pi \alpha \psi L r^4 X-64 \pi ^2 \alpha L r^4 X\nonumber \\&\quad +4 \pi \psi L r^4 X+12 \pi \psi r^4 X^2+64 \pi ^2 r^4 X^2\nonumber \\&\quad -\alpha \psi ^2 r^2 X+\alpha \psi ^2 e^{r^2 X}-12 \pi \alpha \psi r^2 X\nonumber \\&\quad +12 \pi \alpha \psi e^{r^2 X}-32 \pi ^2 \alpha r^2 X+32 \pi ^2 \alpha e^{r^2 X}\nonumber \\&\quad -4 \pi \psi r^2 X+4 \pi \psi e^{r^2 X}-32 \pi ^2 r^2 X\nonumber \\&\quad +32 \pi ^2 e^{r^2 X}+\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}\nonumber \\&\quad +\pi \psi r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}-32 \pi ^2\}^{-1}, \end{aligned}$$
(B3)
$$\begin{aligned}\nu ^{2}_{r}&=\{-\alpha \psi ^2-12 \pi \alpha \psi -32 \pi ^2 \alpha +4 \pi \psi \nonumber \\&\quad +12 \pi \psi L r^4 X+64 \pi ^2 L r^4 X+2 \alpha \psi ^2 r^4 X^2\nonumber \\&\quad +24 \pi \alpha \psi r^4 X^2+64 \pi ^2 \alpha r^4 X^2+4 \pi \psi r^4 X^2\nonumber \\&\quad -\alpha \psi ^2 r^2 X+\alpha \psi ^2 e^{r^2 X}-12 \pi \alpha \psi r^2 X\nonumber \\&\quad +12 \pi \alpha \psi e^{r^2 X}-32 \pi ^2 \alpha r^2 X+32 \pi ^2 \alpha e^{r^2 X}\nonumber \\&\quad +4 \pi \psi r^2 X-4 \pi \psi e^{r^2 X}+32 \pi ^2 r^2 X\nonumber \\&\quad -32 \pi ^2 e^{r^2 X}+\pi \psi r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}\nonumber \\&\quad +\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}+32 \pi ^2\}\{\alpha \psi ^2\nonumber \\&\quad +12 \pi \alpha \psi -4 \pi \psi +4 \pi \psi L r^4 X-2 \alpha \psi ^2 r^4 X^2\nonumber \\&\quad -24 \pi \alpha \psi r^4 X^2-64 \pi ^2 \alpha r^4 X^2\nonumber \\&\quad +12 \pi \psi r^4 X^2+32 \pi ^2 \alpha +64 \pi ^2 r^4 X^2\nonumber \\&\quad +\alpha \psi ^2 r^2 X-\alpha \psi ^2 e^{r^2 X}+12 \pi \alpha \psi r^2 X\nonumber \\&-12 \pi \alpha \psi e^{r^2 X}+32 \pi ^2 \alpha r^2 X-32 \pi ^2 \alpha e^{r^2 X}\nonumber \\&\quad -4 \pi \psi r^2 X+4 \pi \psi e^{r^2 X}-32 \pi ^2 r^2 X\nonumber \\&\quad +32 \pi ^2 e^{r^2 X}+\pi (3 \psi +16 \pi ) r^3 e^{r^2 X} {T^{0\textsf {(Cor)}}_{0}}^{'}\nonumber \\&\quad +\pi \psi r^3 e^{r^2 X} {T^{1\textsf {(Cor)}}_{1}}^{'}-32 \pi ^2\}^{-1}. \end{aligned}$$
(B4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Hassan, K. Compact objects by extended gravitational decoupling in f(GT) gravity. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03013-2

Keywords

Navigation