Skip to main content
Log in

Photocatalytic performance of DyCrO3/\(r\)-GO and Dy0.5Ho0.5CrO3/\(r\)-GO nanocomposites: a comparison

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

DyCrO3/\(r\)-GO (DCO/\(r\)-GO) and Dy0.5Ho0.5CrO3/\(r\)-GO (DHCO/\(r\)-GO) nanocomposites consisting of 5 wt.% \(r\)-GO were synthesized by the sol–gel method, and their photocatalytic performance was studied on methylene blue (MB) and rhodamine B (RhB) dyes under solar irradiation. The bandgap energy of DCO/\(r\)-GO and DHCO/\(r\)-GO nanocomposites was found to be 2.63 eV and 2.58 eV, respectively. The DCO/\(r\)-GO and DHCO/\(r\)-GO nanocomposites demonstrated remarkably higher photocatalytic activity than DCO and DHCO nanoparticles. The DCO/\(r\)-GO and DHCO/\(r\)-GO nanocomposites furnished 69.6% and 71.6% degradation of the MB dye and 87% and 96% degradation of RhB dye within 180 min under direct sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R Verma, M Sankhla, N Rathod, S Sonone, K Parihar and G Singh Biointerface Res. Appl. Chem. 12 567 (2021)

    Article  Google Scholar 

  2. R Kishor, D Purchase, G Saratale, R Saratale, L Ferreira, M Bilal, R Chandra and R Bharagava J. Environ. Chem. Eng. 9 105012 (2021)

    Article  Google Scholar 

  3. L Hua, H Ma and L Zhang Chemosphere 90 143 (2013)

    Article  ADS  Google Scholar 

  4. M Purkait, A Maiti, S Gupta and S De J. Hazard. Mater. 145 287 (2007)

    Article  Google Scholar 

  5. P Gupta and P Poddar RSC Adv. 5 10094–10101 (2015)

    Article  ADS  Google Scholar 

  6. S Guo, J Zhou, H Ting, S Luo, H Liang and J Yuan New J. Chem. 43 18146 (2019)

    Article  Google Scholar 

  7. K Ghorai, A Panda, A Hossain, M Bhattacharjee, M Chakraborty, S Bhattacharya, B Show, A Sarkar, P Bera, H Kim, M Seikh and A Gayen J. Rare Earths 40 725 (2021)

    Article  Google Scholar 

  8. R Ahsan, A Mitra, S Omar and M Khan RSC Adv. 8 14258 (2018)

    Article  ADS  Google Scholar 

  9. A Qahtan, S Husain, A Somvanshi, W Khan and Y Manea J. Mater. Sci: Mater. Electron. 31 9335 (2020)

    Google Scholar 

  10. S Iqbal, I Bibi, F Majid, K Jilani, S Kamal, M Iqbal, S Ata and N Nazar J. Colloid Interface Sci. 607 568 (2022)

    Article  ADS  Google Scholar 

  11. M Aamir, I Bibi, S Ata, K Jilani, F Majid, S Kamal, N Alwadai, M Raza, M Bashir and S Iqbal Ceram. Int. 47 16696 (2021)

    Article  Google Scholar 

  12. M Rani, S Dahiya and N Panwar Ceram. Int. 48 19997 (2022)

    Article  Google Scholar 

  13. Y Abed, S Das, S Ali, Z Rana and M Basith Mater. Lett. 318 132159 (2022)

    Article  Google Scholar 

  14. M Aamir, I Bibi, S Ata, F Majid, S Kamal, N Alwadai, M Sultan and S Iqbal J. Mol. Liq. 322 114895 (2021)

    Article  Google Scholar 

  15. V Triphati and R Nagarajan ACS Omega 2 2657 (2017)

    Article  Google Scholar 

  16. A Qahtan, S Husain, N Zarrin, A Somvanshi, M Fatema and W Khan J. Mater. Sci.: Mater. Electr. 32 15108 (2021)

    Google Scholar 

  17. M Yadav, N Panwar, S Singh and P Kumar Int. J. Hydrog. Energy 45 19561 (2020)

    Article  Google Scholar 

  18. A McDannald, L Kuna and M Jain J. Appl. Phys. 114 113904 (2013)

    Article  ADS  Google Scholar 

  19. S Yin, M S Seehra, C J Guild, S L Suib, N Poudel, B Lorenz and M Jain Phys. Rev. B 95 184421 (2017)

    Article  ADS  Google Scholar 

  20. A Kumar, N Deopa, A Kumar, R P Chahal, S Dahiya, R Punia and A S Rao J. Non Cryst. Solids 588 121613 (2022)

    Article  Google Scholar 

  21. B Tiwari, M K Surendra and M S Ramachandra Rao J. Phys. Condens. Matter 25 216004 (2013)

    Article  ADS  Google Scholar 

  22. P S Khare, R Yadav and A Swarup Int. J. Appl. Phys. Math. 3 95 (2013)

    Article  Google Scholar 

  23. K Kanwar, B R Chen, Y K Kuo and N Panwar Ceram. Int. 49 2506 (2023)

    Article  Google Scholar 

  24. C Rodwihok, D Wongratanaphisan, Y L T Ngo, M Khandelwal, S H Hur and J S Chung Nanomaterials 9 1441 (2019)

    Article  Google Scholar 

  25. S Tayyebeh and B Lee Chem. Eng. J. 306 204 (2016)

    Article  Google Scholar 

  26. S Chang, Y Sang and H Liu Crystals 11 59 (2021)

    Article  Google Scholar 

  27. L Zeng, T Peng, H Sun, J Yang, Y Li and Y Qin J. Solid State Chem. 297 122033 (2021)

    Article  Google Scholar 

  28. J Espinosa, M Alvaro, A Dhakshinamoorthy, S Navalon and H Garcia ACS Sustain. Chem. Eng. 7 15948 (2019)

    Article  Google Scholar 

  29. T Xian, H Yang, L Di, J Ma, H Zhang and J Dai Nanoscale Res. Lett. 9 10198 (2014)

    Article  Google Scholar 

  30. M Abdi, V Mahdikhah and S Sheibani Opt. Mater. 102 109803 (2020)

    Article  Google Scholar 

  31. C Haung, C Li and G Shi Energy Environ. Sci. 5 8848 (2012)

    Article  Google Scholar 

  32. Q Li, X Li, S Wageh, A A Al-Ghamdi and J Yu Adv. Energy Mater. 5 1500010 (2015)

    Article  Google Scholar 

  33. G Venkatesh, S Vignesh, M Srinivasan, G Palanisamy, N Elavarasan, K Bhuvaneswari, P Ramasamy, M Alam, M Ubaidullah and M K Raza Colloids Surf. A Physicochem. Eng. Asp. 629 127523 (2021)

    Article  Google Scholar 

  34. A Hoseini, S Farhadi, A Zabardasti and F Siadatnasab RSC Adv. 9 24489 (2019)

    Article  ADS  Google Scholar 

  35. L Zhang, T Xu, Q Guo, Z Ling, R Zou and Q Wu J. Phys. Chem. Solids 110 136 (2017)

    Article  ADS  Google Scholar 

  36. X Ren, H Yang, S Gen, J Zhou, T Yang, X Zhang, Z Chenga and S Sun Nanoscale 8 752 (2016)

    Article  ADS  Google Scholar 

  37. K Kiran, R Shashanka and S Lokesh Top Catal. 1 (2022)

  38. M Kumar, M Ansari, I Boukhris, M Al-Buriahi, Z Alrowaili, N Alfryyan, P Thomas and R Vaish Global Challenges 6 2100132 (2022)

    Article  Google Scholar 

  39. Y Gu, M Kim, H Kim and D Lim Catalysts 13 399 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Department of Science and Technology (DST), India, for INSPIRE fellowship (IF No. 190213) to Manjeet Rani and DST SERB, India, for the utilization of facility sanctioned in the Project ECR/2017/002681 to Neeraj Panwar. The XRD facility at the Central University of Rajasthan (CURAJ) and SEM facility at Thapar Institute of Engineering & Technology (Patiala) are also acknowledged. MDU Rohtak (India) is also acknowledged for optical measurements. Dr. Ritu Singh, CURAJ (India), is acknowledged for absorbance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Panwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Yadav, M.K. & Panwar, N. Photocatalytic performance of DyCrO3/\(r\)-GO and Dy0.5Ho0.5CrO3/\(r\)-GO nanocomposites: a comparison. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03024-z

Keywords

Navigation