Skip to main content
Log in

Impact of rare earth (La3+) doping on structural, morphological, optical and dielectric properties of NdVO4 nanoparticles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present work reports the synthesis of LaxNd1−xVO4 where x = 0, 0.05, 0.10 and 0.15 by a solution based co-precipitation method at pH = 12 calcined at 650 °C in nanoparticle form. The novelty of the present work is preparation and various applications of targeted materials by using a traditional liquid-based technique at room temperature without use of any surfactants. The structural, morphological, optical and luminescent properties of as-obtained compositions were characterized by various techniques such as powder X-ray diffraction (PXRD) followed by Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) with selected area electron diffraction (SAED), ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. The PXRD diffraction patterns confirmed tetragonal structure with crystallite size ranging between 22 and 35 nm for all four compositions. The PXRD results are further validated by Rietveld refinement method with low values of profile parameters. HRTEM supplemented with SAED analysis revealed that with a change in doping concentration, there is a change in morphology from rod-shaped to porous hexagonal-shaped features. The optical band gap values are found to be in the range of wide-band semiconductors (2–4 eV). The dielectric properties of as-prepared La-doped NdVO4 nanoparticles were investigated. The dielectric constant is low in x = 0.0 composition, whereas it increases with an increase in La3+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data sets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V Zepf Chapter 1 Rare earths Industry (Boston: Elsevier) (2016). https://doi.org/10.1016/B978-0-12-802328-0.00001-2

  2. G Wang, Q Peng and Y Li Acc. Chem. Res. 44 322 (2011)

    Article  Google Scholar 

  3. B C Chakoumakos, M M Abraham and L A BatnerJ Solid State Chem. 109 197 (1994)

    Article  ADS  Google Scholar 

  4. M Prasad, A Pandit, T H Ansari, R A Singh and B M WanklynPhys Lett. 138 61 (1989)

    Google Scholar 

  5. B H T Chai, G Loutts, X X Chang, P Hong, M Bass, I A Shcherbakov and A I Zagumennyi: Advanced solid state lasers, Technical digest Washington (DC): Optical Society of America. 20 41 (1994)

  6. K Byrappa, K Rai, B Nirmala and M Yoshimura Mater Sci. Forum. 506 315 (1999)

    Google Scholar 

  7. A Nag, D Ghosh and B M Wanklyn Solid State Commun. 108 265 (1998)

    Article  ADS  Google Scholar 

  8. S Balasubramanian, J N Baby and Y F Hsu Chem. Eng. J. 451 138694 (2023)

    Article  Google Scholar 

  9. M Vosoughifar J. Mater. Sci. Mater. Electron. 27 7384 (2016)

    Article  Google Scholar 

  10. V Panchal, D Errandone, F J Manjon, A Munoz, H P Rodriguez, S N Achary and A K Tyagi J. Phys. Chem. Sol. 100 126 (2017)

    Article  ADS  Google Scholar 

  11. L Wei, F Liang, S Yi-hu and T Ying J. Electr. Mat. 4 46 (2017)

    Google Scholar 

  12. S Balasubramanian, J N Baby and Y F Hsu J. Electrochem. Soc. 169 087508 (2022)

    Article  ADS  Google Scholar 

  13. M Dragomir and M ValantActa Chim. Slov. 65 679 (2018)

    Article  Google Scholar 

  14. M M Saad and A EhlagIndian J. Phys. 96 2731 (2022)

    Google Scholar 

  15. L Tian, S Chen and Q Liu Trans. Nonferrous Met. Soc. China 30 1031 (2020)

    Article  Google Scholar 

  16. R Monsef, M G Arani and M S NiasariJ Environ. Manag. 230 266 (2019)

    Google Scholar 

  17. N O Nunez, P Zambrano and J G Sevillano Eur. J. Inorg. Chem. 27 4546 (2015)

    Article  Google Scholar 

  18. P Kumari, P K Baitha and J Manam Indian J. Phys. 89 1297 (2015)

    Article  ADS  Google Scholar 

  19. D R Kamble, S V Bangale and S R Bamane Nanosyst. Phys. Chem. Math. 12 199 (2021)

    Article  Google Scholar 

  20. M Ying, J Hou, W Xie, Y Xu, S Shena, H Pan and M Du Sens. Actuators B 260 125 (2018)

    Article  Google Scholar 

  21. S Thakur and A K GathaniaIndian J. Phys. 89 973 (2015)

    Google Scholar 

  22. Saloni and A Khanna J. Mater. Sci.: Mater. Electron 34 70 (2023)

  23. S Ghotekar, S Pansambal, K Y Andrew, D Pore and R Oza Top. Catal. 66 89 (2023)

    Article  Google Scholar 

  24. H Aijiang, L Feng, L Liu, J Peng, Y Chen, L Xuhao, L Wencong and L Junyang J. Mater. Sci. Mater. Electron. 31 13131 (2020)

    Article  Google Scholar 

  25. S B Narang, D Kaur and S Bahel Mater. Lett. 60 3179 (2006)

    Article  Google Scholar 

  26. https://www.azonano.com/article.aspx?ArticleID=3285

  27. B D Cullity Elements of X-Ray Diffraction, second ed., (Philippines: Addison- Wesley Publishing Company) (1978)

  28. W H Hall and G K Williamson Proc. Phys. Soc. B 64 937 (1951)

    Article  ADS  Google Scholar 

  29. P C Dey and R Das Indian J. Phys. 92 1099 (2018)

    Article  ADS  Google Scholar 

  30. A R Stokes and A J Wilson Proc. Phys. Soc. 56 174 (1944)

    Article  ADS  Google Scholar 

  31. A A Bagade, V V Ganbavle, S V Mohite, T D Dongale, B B Sinha and K Y Rajpure J. Colloid Interface Sci. 497 181 (2017)

    Article  ADS  Google Scholar 

  32. S Anand, S Pauline, V M Vinosel and M A Janifer Mater. Today Proc. 8 476 (2019)

    Article  Google Scholar 

  33. D R Kamble, S V Bangale, S K Ghotekar and S R Bamane J. Nanostruct. 8 144 (2018)

    Google Scholar 

  34. S Mahapatra, G Madras and T N Guru Ind. Eng. Chem. Res. 46 1013 (2007)

    Article  Google Scholar 

  35. B Akbari, M P Tavandashti and M ZandrahimiIran J. Mater. Sci. Eng. 8 48 (2011)

    Google Scholar 

  36. T Ungar, G Tichy, J Gubicza and R J Hellmig Powder Diffr. 20 366 (2005)

    Article  ADS  Google Scholar 

  37. X Pan, I M Ramirez, R Mernaugh and J Liu Colloids Surf. B77 82 (2010)

    Article  Google Scholar 

  38. R K Selvan, A Gedanken, P Anilkumar, G Manikandan and C Karunakaran J. Clust. Sci. 20 291 (2009)

    Article  Google Scholar 

  39. C T Au, W D Zhang and H L Wan Catal. Lett. 37 241 (1996)

    Article  Google Scholar 

  40. R S Dubey and S Singh Res. Phys. 71 283 (2017)

    Google Scholar 

  41. N Deligne, V Gonze, D Bayot and M Devillers Eur. J. Inorg. Chem. 6 896 (2008)

    Article  Google Scholar 

  42. V Panchal, D Errandonea, A Segura, P R Hernandez, A Muñoz, S L Moreno and M Bettinelli J. Appl. Phys. 110 043723 (2011)

    Article  ADS  Google Scholar 

  43. S Verma, R Gupta and K K Bamzai Mater. Res. Bull. 81 71 (2016)

    Article  Google Scholar 

  44. S Suresh and C Arunseshan Appl. Nanosci. 4 179 (2014)

    Article  ADS  Google Scholar 

  45. A Purwanto, W N Wang, I W Lenggoro and K Okuyama J. Electrochem. Soc. 91 154 (2007)

    Google Scholar 

  46. H M El Mallah Acta Physica Polonica A 122 174 (2012)

    Article  ADS  Google Scholar 

  47. A S Das and D Biswas Mater. Res. Express 6 075206 (2019)

    Article  ADS  Google Scholar 

  48. M Nascimento and S Watanabe J. Phys. 36 795 (2006)

    Google Scholar 

  49. A Mansingh, R P Tandon and J K Vaid Phys. Rev. B 21 4829 (1980)

    Article  ADS  Google Scholar 

  50. K Sultan, R Samad and F Nazar Adv. Mater. Lett. 12 21061640 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks and gratitude to the Sophisticated Test and Instrumentation Centre (STIC), Cochin University, for providing the facilities of powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy supplemented with selected area electron diffraction (HRTEM–SAED) and Fourier transform infrared (FTIR) spectrophotometer. The corresponding author also acknowledges the Research & Seed Grant given to the CGMR laboratory by University of Jammu under the Head Quality Assurance Fund (DIQA), RUSA 2.0 and PURSE grants.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed toward studying this problem. Material preparation, data collection and analyses were performed by Monika and Bindu Raina. Mitesh Solanki and Bharat Parekh contributed to the X-ray diffraction and Rietveld analysis. The first draft of the manuscript was written by Monika. Prof. K.K. Bamzai supervised and conceived the problem. All the authors read and approved this manuscript.

Corresponding author

Correspondence to K. K. Bamzai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Raina, B., Solanki, M. et al. Impact of rare earth (La3+) doping on structural, morphological, optical and dielectric properties of NdVO4 nanoparticles. Indian J Phys (2023). https://doi.org/10.1007/s12648-023-03009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03009-y

Keywords

Navigation