Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Energy-driven genome regulation by ATP-dependent chromatin remodellers

Abstract

The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone–DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation — for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input–output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Active chromatin self-organization and genome regulation.
Fig. 2: Nucleosome organization by remodellers.
Fig. 3: Assemblies and architectures of chromatin remodellers.
Fig. 4: Nucleosome binding and DNA translocation mechanism of Snf2-type motor ATPases.
Fig. 5: Structural mechanisms and principles of remodelling.
Fig. 6: Three stages of nucleosome remodelling and an updated hourglass model.
Fig. 7: Examples of input–output relationships provided by remodellers.
Fig. 8: Cancer mutations affect chromatin remodellers in various ways.

Similar content being viewed by others

References

  1. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martire, S. & Banaszynski, L. A. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 21, 522–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venter, U., Svaren, J., Schmitz, J., Schmid, A. & Horz, W. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13, 4848–4855 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chacin, E. et al. Establishment and function of chromatin organization at replication origins. Nature 616, 836–842 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Karl, L. A., Peritore, M., Galanti, L. & Pfander, B. DNA double strand break repair and its control by nucleosome remodeling. Front. Genet. 12, 821543 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Hauer, M. H. & Gasser, S. M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes. Dev. 31, 2204–2221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Epigenetics (eds. Allis, C. D. et al.) 2nd edn (Cold Spring Harbor Laboratory Press, 2015).

  13. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Flaus, A., Martin, D. M., Barton, G. J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rando, O. J. & Winston, F. Chromatin and transcription in yeast. Genetics 190, 351–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dobson, C. M., Šali, A. & Karplus, M. Protein folding: a perspective from theory and experiment. Angew. Chem. Int. Ed. Engl. 37, 868–893 (1998).

    Article  PubMed  Google Scholar 

  19. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    Article  PubMed  Google Scholar 

  20. Dahiya, V. & Buchner, J. Functional principles and regulation of molecular chaperones. Adv. Protein Chem. Struct. Biol. 114, 1–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Rippe, K. Liquid-liquid phase separation in chromatin. Cold Spring Harb. Perspect. Biol. 14, a040683 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847–852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Becker, P. B. & Wu, C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12, 2241–2249 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Almouzni, G. & Méchali, M. Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity. EMBO J. 7, 4355–4365 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oberbeckmann, E. et al. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat. Commun. 12, 3232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rippe, K. et al. DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes. Proc. Natl Acad. Sci. USA 104, 15635–15640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721.e712 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finka, A., Mattoo, R. U. & Goloubinoff, P. Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes. Annu. Rev. Biochem. 85, 715–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Baldi, S., Korber, P. & Becker, P. B. Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat. Struct. Mol. Biol. 27, 109–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Baldi, S., Krebs, S., Blum, H. & Becker, P. B. Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing. Nat. Struct. Mol. Biol. 25, 894–901 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Rossi, M. J. et al. A high-resolution protein architecture of the budding yeast genome. Nature 592, 309–314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnes, T. & Korber, P. The active mechanism of nucleosome depletion by Poly(dA:dT) tracts in vivo. Int. J. Mol. Sci. 22, 8233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haberle, V. et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507, 381–385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ibarra-Morales, D. et al. Histone variant H2A.Z regulates zygotic genome activation. Nat. Commun. 12, 7002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Brehm, A. et al. dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBO J. 19, 4332–4341 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varga-Weisz, P. D. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Lusser, A., Urwin, D. L. & Kadonaga, J. T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Udugama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31, 662–673 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes. Dev. 13, 686–697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kubik, S. et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. van Bakel, H. et al. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet. 9, e1003479 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yen, K., Vinayachandran, V., Batta, K., Koerber, R. T. & Pugh, B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh, A. K., Schauer, T., Pfaller, L., Straub, T. & Mueller-Planitz, F. The biogenesis and function of nucleosome arrays. Nat. Commun. 12, 7011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bomber, M. L. et al. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol. Cell 83, 507–522.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamada, K. et al. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472, 448–453 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Li, L. et al. Structure of the ISW1a complex bound to the dinucleosome. Preprint at bioRxiv https://doi.org/10.1101/2023.01.02.522444 (2023).

  56. Basu, A. et al. Measuring DNA mechanics on the genome scale. Nature 589, 462–467 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Basu, A. et al. Deciphering the mechanical code of the genome and epigenome. Nat. Struct. Mol. Biol. 29, 1178–1187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oberbeckmann, E. et al. Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat. Commun. 12, 3231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes. Dev. 28, 2492–2497 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen, H., Kharerin, H., Dhasarathy, A., Kladde, M. & Bai, L. Partitioned usage of chromatin remodelers by nucleosome-displacing factors. Cell Rep. 40, 111250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kubik, S. et al. Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription. Mol. Cell 71, 89–102.e105 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Winger, J. & Bowman, G. D. The sequence of nucleosomal DNA modulates sliding by the Chd1 chromatin remodeler. J. Mol. Biol. 429, 808–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park, S., Brandani, G. B., Ha, T. & Bowman, G. D. Bi-directional nucleosome sliding by the Chd1 chromatin remodeler integrates intrinsic sequence-dependent and ATP-dependent nucleosome positioning. Nucleic Acids Res. 51, 10326–10343 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Vugt, J. J. et al. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS ONE 4, e6345 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Manelyte, L., Strohner, R., Gross, T. & Langst, G. Chromatin targeting signals, nucleosome positioning mechanism and non-coding RNA-mediated regulation of the chromatin remodeling complex NoRC. PLoS Genet. 10, e1004157 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Challal, D. et al. General regulatory factors control the fidelity of transcription by restricting non-coding and ectopic initiation. Mol. Cell 72, 955–969.e957 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Parnell, T. J., Schlichter, A., Wilson, B. G. & Cairns, B. R. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 4, e06073 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Ganguli, D., Chereji, R. V., Iben, J. R., Cole, H. A. & Clark, D. J. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. 24, 1637–1649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rawal, Y. et al. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes. Dev. 32, 695–710 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klein-Brill, A., Joseph-Strauss, D., Appleboim, A. & Friedman, N. Dynamics of chromatin and transcription during transient depletion of the RSC chromatin remodeling complex. Cell Rep. 26, 279–292.e275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rawal, Y., Qiu, H. & Hinnebusch, A. G. Distinct functions of three chromatin remodelers in activator binding and preinitiation complex assembly. PLoS Genet. 18, e1010277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Giaimo, B. D., Ferrante, F., Herchenröther, A., Hake, S. B. & Borggrefe, T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kreienbaum, C., Paasche, L. W. & Hake, S. B. H2A.Z’s ‘social’ network: functional partners of an enigmatic histone variant. Trends Biochem. Sci. 47, 909–920 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Ramachandran, S., Ahmad, K. & Henikoff, S. Transcription and remodeling produce asymmetrically unwrapped nucleosomal intermediates. Mol. Cell 68, 1038–1053.e1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res. 29, 407–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hsieh, L. J. et al. A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Mol. Cell 82, 2098–2112.e2094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eriksson, P. R. & Clark, D. J. The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci. Rep. 11, 4195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Engeholm, M. et al. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wiechens, N. et al. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12, e1005940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Flaus, A., Rencurel, C., Ferreira, H., Wiechens, N. & Owen-Hughes, T. Sin mutations alter inherent nucleosome mobility. EMBO J. 23, 343–353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rudnizky, S., Khamis, H., Malik, O., Melamed, P. & Kaplan, A. The base pair-scale diffusion of nucleosomes modulates binding of transcription factors. Proc. Natl Acad. Sci. USA 116, 12161–12166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rudnizky, S. et al. H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes. Nat. Commun. 7, 12958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fierz, B. & Poirier, M. G. Biophysics of chromatin dynamics. Annu. Rev. Biophy. 48, 321–345 (2019).

    Article  CAS  Google Scholar 

  90. Blank, T. A. & Becker, P. B. The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J. Mol. Biol. 260, 1–8 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Iurlaro, M. et al. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat. Genet. 53, 279–287 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Weber, C. M. et al. mSWI/SNF promotes polycomb repression both directly and through genome-wide redistribution. Nat. Struct. Mol. Biol. 28, 501–511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schick, S. et al. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat. Genet. 53, 269–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes. Dev. 26, 369–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Larson, A. G. & Narlikar, G. J. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry 57, 2540–2548 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Kuang, J. et al. SS18 regulates pluripotent-somatic transition through phase separation. Nat. Commun. 12, 4090 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Patil, A. et al. A disordered region controls cBAF activity via condensation and partner recruitment. Cell 186, 4936–4955.e26 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, G. et al. Taf14 recognizes a common motif in transcriptional machineries and facilitates their clustering by phase separation. Nat. Commun. 11, 4206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Narlikar, G. J. et al. Is transcriptional regulation just going through a phase? Mol. Cell 81, 1579–1585 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Fan, H. Y., Narlikar, G. J. & Kingston, R. E. Noncovalent modification of chromatin: different remodeled products with different ATPase domains. Cold Spring Harb. Symp. Quant. Biol. 69, 183–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Längst, G. & Becker, P. B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).

    Article  PubMed  Google Scholar 

  103. Pyle, A. M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Fairman-Williams, M. E., Guenther, U. P. & Jankowsky, E. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jungblut, A., Hopfner, K. P. & Eustermann, S. Megadalton chromatin remodelers: common principles for versatile functions. Curr. Opin. Struct. Biol. 64, 134–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Szerlong, H. et al. The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat. Struct. Mol. Biol. 15, 469–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schubert, H. L. et al. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc. Natl Acad. Sci. USA 110, 3345–3350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Knoll, K. R. et al. The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 25, 823–832 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Eustermann, S. et al. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556, 386–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ayala, R. et al. Structure and regulation of the human INO80-nucleosome complex. Nature 556, 391–395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Auger, A. et al. Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants. Mol. Cell. Biol. 28, 2257–2270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cai, Y. et al. YY1 functions with INO80 to activate transcription. Nat. Struct. Mol. Biol. 14, 872–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Kunert, F. et al. Structural mechanism of extranucleosomal DNA readout by the INO80 complex. Sci. Adv. 8, eadd3189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mellor, J. & Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Oppikofer, M. et al. Expansion of the ISWI chromatin remodeler family with new active complexes. EMBO Rep. 18, 1697–1706 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hoffmeister, H. et al. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res. 45, 10534–10554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kolla, V. et al. The tumour suppressor CHD5 forms a NuRD-type chromatin remodelling complex. Biochem. J. 468, 345–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Miccio, A. et al. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J. 29, 442–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Gottschalk, A. J. et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl Acad. Sci. USA 106, 13770–13774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bacic, L. et al. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife 10, e71420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Awad, S., Ryan, D., Prochasson, P., Owen-Hughes, T. & Hassan, A. H. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme. J. Biol. Chem. 285, 9477–9484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Markert, J., Zhou, K. & Luger, K. SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity. Sci. Adv. 7, eabk2380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Picketts, D. J. et al. ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 5, 1899–1907 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Truch, J. et al. The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin. Nat. Commun. 13, 3485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell. Biol. 20, 7643–7653 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Spakman, D. et al. PICH acts as a force-dependent nucleosome remodeler. Nat. Commun. 13, 7277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kokic, G., Wagner, F. R., Chernev, A., Urlaub, H. & Cramer, P. Structural basis of human transcription-DNA repair coupling. Nature 598, 368–372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stanton, B. Z. et al. Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat. Genet. 49, 282–288 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Kadoch, C. et al. Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Li, M. et al. Dynamic regulation of transcription factors by nucleosome remodeling.eLife 4, e06429 (2015).

    Article  Google Scholar 

  132. Boeger, H., Griesenbeck, J. & Kornberg, R. D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dechassa, M. L. et al. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol. Cell 38, 590–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Woike, S. et al. Structural basis for TBP displacement from TATA box DNA by the Swi2/Snf2 ATPase Mot1. Nat. Struct. Mol. Biol. 30, 640–649 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Butryn, A., Woike, S., Shetty, S. J., Auble, D. T. & Hopfner, K. P. Crystal structure of the full Swi2/Snf2 remodeler Mot1 in the resting state. eLife 7, e37774 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Butryn, A. et al. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1. eLife 4, e07432 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Schilbach, S. et al. Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 551, 204–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aibara, S., Schilbach, S. & Cramer, P. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594, 124–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Wolf, B. K. et al. Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor AP-1 shapes 3D enhancer landscapes. Nat. Struct. Mol. Biol. 30, 10–21 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Otto, J. E. et al. Structural and functional properties of mSWI/SNF chromatin remodeling complexes revealed through single-cell perturbation screens. Mol. Cell 83, 1350–1367.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chang, C. Y. et al. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol. Cell 81, 4964–4978.e4968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544, 440–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Chittori, S., Hong, J., Bai, Y. & Subramaniam, S. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Nucleic Acids Res. 47, 9400–9409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Armache, J. P. et al. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. eLife 8, e46057 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Li, M. et al. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature 567, 409–413 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Farnung, L., Vos, S. M., Wigge, C. & Cramer, P. Nucleosome-Chd1 structure and implications for chromatin remodelling. Nature 550, 539–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sundaramoorthy, R. et al. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. eLife 7, e35720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Han, Y., Reyes, A. A., Malik, S. & He, Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Wagner, F. R. et al. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579, 448–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, L., Chen, K. & Chen, Z. Structural basis of ALC1/CHD1L autoinhibition and the mechanism of activation by the nucleosome. Nat. Commun. 12, 4057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Willhoft, O. et al. Structure and dynamics of the yeast SWR1-nucleosome complex. Science 362, eaat7716 (2018).

    Article  PubMed  Google Scholar 

  155. Yan, L., Wu, H., Li, X., Gao, N. & Chen, Z. Structures of the ISWI-nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Yuan, J., Chen, K., Zhang, W. & Chen, Z. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome. Nature 605, 166–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Ye, Y. et al. Structure of the RSC complex bound to the nucleosome. Science 366, 838–843 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Farnung, L., Ochmann, M. & Cramer, P. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. eLife 9, e56178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhang, M. et al. Hexasome-INO80 complex reveals structural basis of noncanonical nucleosome remodeling. Science 381, 313–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Wu, H. et al. Reorientation of INO80 on hexasomes reveals basis for mechanistic versatility. Science 381, 319–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nodelman, I. M. et al. Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nat. Struct. Mol. Biol. 29, 121–129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Racki, L. R. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Willhoft, O. et al. Crosstalk within a functional INO80 complex dimer regulates nucleosome sliding. eLife 6, e25782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Mashtalir, N. et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science 373, 306–315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bhattacharyya, B. & Keck, J. L. Grip it and rip it: structural mechanisms of DNA helicase substrate binding and unwinding. Protein Sci. 23, 1498–1507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Büttner, K., Nehring, S. & Hopfner, K. P. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat. Struct. Mol. Biol. 14, 647–652 (2007).

    Article  PubMed  Google Scholar 

  169. Dürr, H., Körner, C., Müller, M., Hickmann, V. & Hopfner, K. P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005).

    Article  PubMed  Google Scholar 

  170. Winger, J., Nodelman, I. M., Levendosky, R. F. & Bowman, G. D. A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA. eLife 7, e34100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nodelman, I. M. & Bowman, G. D. Biophysics of chromatin remodeling. Annu. Rev. Biophys. 50, 73–93 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Gu, M. & Rice, C. M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl Acad. Sci. USA 107, 521–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Myong, S., Rasnik, I., Joo, C., Lohman, T. M. & Ha, T. Repetitive shuttling of a motor protein on DNA. Nature 437, 1321–1325 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Deindl, S. et al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152, 442–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sabantsev, A., Levendosky, R. F., Zhuang, X., Bowman, G. D. & Deindl, S. Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. Nat. Commun. 10, 1720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhou, C. Y. et al. The yeast INO80 complex operates as a tunable dna length-sensitive switch to regulate nucleosome sliding. Mol. Cell 69, 677–688.e679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Brahma, S. et al. INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat. Commun. 8, 15616 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sirinakis, G. et al. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size. EMBO J. 30, 2364–2372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Suto, R. K. et al. Crystal structures of nucleosome core particles in complex with minor groove DNA-binding ligands. J. Mol. Biol. 326, 371–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. van Holde, K. E. a. Y., T.D. in: Structure and Function of the Genetic Apparatus (ed. Nicolini C.) 35–53 (Plenum Press, 1985).

  182. Sinha, K. K., Gross, J. D. & Narlikar, G. J. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science 355, eaaa3761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Paul, S. & Bartholomew, B. Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors. Biochem. Soc. Trans. 46, 1423–1430 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Clapier, C. R. et al. Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Mol. Cell 62, 453–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Watanabe, S. & Peterson, C. L. Response to comment on “A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme”. Science 353, 358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, F., Ranjan, A., Wei, D. & Wu, C. Comment on “A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme”. Science 353, 358 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Ranjan, A. et al. H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement in budding yeast. eLife 4, e06845 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Iwasa, J. SWR1 with FRET trace. https://vimeo.com/691466557 (2022).

  189. Poyton, M. F. et al. Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. Sci. Adv. 8, eabj5509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Histone acetylation inhibits RSC and stabilizes the +1 nucleosome. Mol. Cell 72, 594–600.e592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Clapier, C. R., Längst, G., Corona, D. F., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yan, L., Wang, L., Tian, Y., Xia, X. & Chen, Z. Structure and regulation of the chromatin remodeller ISWI. Nature 540, 466–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Xia, X., Liu, X., Li, T., Fang, X. & Chen, Z. Structure of chromatin remodeler Swi2/Snf2 in the resting state. Nat. Struct. Mol. Biol. 23, 722–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Hauk, G., McKnight, J. N., Nodelman, I. M. & Bowman, G. D. The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 39, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nodelman, I. M., Shen, Z., Levendosky, R. F. & Bowman, G. D. Autoinhibitory elements of the Chd1 remodeler block initiation of twist defects by destabilizing the ATPase motor on the nucleosome. Proc. Natl Acad. Sci. USA 118, e2014498118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kovač, K. et al. Tumour-associated missense mutations in the dMi-2 ATPase alters nucleosome remodelling properties in a mutation-specific manner. Nat. Commun. 9, 2112 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Durr, H., Flaus, A., Owen-Hughes, T. & Hopfner, K. P. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 34, 4160–4167 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Singh, H. R. et al. A poly-ADP-ribose trigger releases the auto-inhibition of a chromatin remodeling oncogene. Mol. Cell 68, 860–871.e867 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Ludwigsen, J. et al. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail. eLife 6, e21477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Farnung, L., Ochmann, M., Engeholm, M. & Cramer, P. Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nat. Struct. Mol. Biol. 28, 382–387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Altaf, M. et al. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J. Biol. Chem. 285, 15966–15977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lehmann, L. C. et al. Mechanistic insights into regulation of the ALC1 remodeler by the nucleosome acidic patch. Cell Rep. 33, 108529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, e35322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Sen, P., Ghosh, S., Pugh, B. F. & Bartholomew, B. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res. 39, 9155–9166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Clapier, C. R., Verma, N., Parnell, T. J. & Cairns, B. R. Cancer-associated gain-of-function mutations activate a SWI/SNF-family regulatory hub. Mol. Cell 80, 712–725.e715 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Baker, R. W. et al. Structural insights into assembly and function of the RSC chromatin remodeling complex. Nat. Struct. Mol. Biol. 28, 71–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Luo, D. et al. Structural insights into RNA recognition by RIG-I. Cell 147, 409–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. McKnight, J. N., Jenkins, K. R., Nodelman, I. M., Escobar, T. & Bowman, G. D. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol. Cell. Biol. 31, 4746–4759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Abdulhay, N. J. et al. Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler. Nat. Struct. Mol. Biol. 30, 1571–1581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dechassa, M. L. et al. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Nucleic Acids Res. 40, 4412–4421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kassabov, S. R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12, 747–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Yen, K., Vinayachandran, V. & Pugh, B. F. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154, 1246–1256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ranjan, A. et al. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell 154, 1232–1245 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Fourel, G., Miyake, T., Defossez, P. A., Li, R. & Gilson, E. General regulatory factors (GRFs) as genome partitioners. J. Biol. Chem. 277, 41736–41743 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. Isbel, L., Grand, R. S. & Schübeler, D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 23, 728–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  221. Hughes, A. L., Jin, Y., Rando, O. J. & Struhl, K. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol. Cell 48, 5–15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. van Holde, K. E. Chromatin. (Springer, 1989).

  223. Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tsankov, A. M., Thompson, D. A., Socha, A., Regev, A. & Rando, O. J. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol. 8, e1000414 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Partensky, P. D. & Narlikar, G. J. Chromatin remodelers act globally, sequence positions nucleosomes locally. J. Mol. Biol. 391, 12–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gonzalez, S. et al. Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome. Genome Res. 26, 1532–1543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kaaij, L. J. T., Mohn, F., van der Weide, R. H., de Wit, E. & Bühler, M. The ChAHP complex counteracts chromatin looping at CTCF sites that emerged from SINE expansions in mouse. Cell 178, 1437–1451.e1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  228. Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Floer, M. et al. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding. Cell 141, 407–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Rohs, R. et al. The role of DNA shape in protein-DNA recognition. Nature 461, 1248–1253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhou, T. et al. DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res. 41, W56–W62 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Levo, M. et al. Unraveling determinants of transcription factor binding outside the core binding site. Genome Res. 25, 1018–1029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Engel, C. et al. Structural basis of RNA polymerase I transcription initiation. Cell 169, 120–131.e122 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Moyle-Heyrman, G. et al. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning. Proc. Natl Acad. Sci. USA 110, 20158–20163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  236. Kim, J. M. et al. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10, e69387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Erdel, F., Schubert, T., Marth, C., Längst, G. & Rippe, K. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites. Proc. Natl Acad. Sci. USA 107, 19873–19878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Nguyen, V. Q. et al. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol. Cell 81, 3560–3575.e3566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. von Hippel, P. H. & Berg, O. G. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678 (1989).

    Article  Google Scholar 

  240. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  241. Bonnet, J. et al. Quantification of proteins and histone marks in drosophila embryos reveals stoichiometric relationships impacting chromatin regulation. Dev. Cell 51, 632–644.e636 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Tilly, B. C. et al. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. eLife 10, e69424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8, e55119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Arnaud, O., Le Loarer, F. & Tirode, F. BAFfling pathologies: alterations of BAF complexes in cancer. Cancer Lett. 419, 266–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Jones, C. A., Tansey, W. P. & Weissmiller, A. M. Emerging themes in mechanisms of tumorigenesis by SWI/SNF subunit mutation. Epigenet Insights 15, 25168657221115656 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Alfert, A., Moreno, N. & Kerl, K. The BAF complex in development and disease. Epigenetics Chromatin 12, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chen, K., Yuan, J., Sia, Y. & Chen, Z. Mechanism of action of the SWI/SNF family complexes. Nucleus 14, 2165604 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Morrison, E. A. et al. DNA binding drives the association of BRG1/hBRM bromodomains with nucleosomes. Nat. Commun. 8, 16080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Frederick, M. A. et al. A pioneer factor locally opens compacted chromatin to enable targeted ATP-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 30, 31–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  252. King, H. W. & Klose, R. J. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 6, e22631 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell 68, 1067–1082.e1012 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kelso, T. W. R. et al. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife 6, e30506 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Argentaro, A. et al. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc. Natl Acad. Sci. USA 104, 11939–11944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kadoch, C. & Crabtree, G. R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Li, J. et al. A role for SMARCB1 in synovial sarcomagenesis reveals that SS18-SSX induces canonical BAF destruction. Cancer Discov. 11, 2620–2637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Thaete, C. et al. Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum. Mol. Genet. 8, 585–591 (1999).

    Article  CAS  PubMed  Google Scholar 

  260. McBride, M. J. et al. The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma. Nat. Struct. Mol. Biol. 27, 836–845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. McBride, M. J. et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141.e1127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171, 163–178.e119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Owen, I. et al. The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid-liquid phase separation. J. Cell Sci. 134, jcs258578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Chua, E. Y., Vasudevan, D., Davey, G. E., Wu, B. & Davey, C. A. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res. 40, 6338–6352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Animations were created by G. Hsu and J. Iwasa based on many enjoyable and insightful discussions. We gratefully acknowledge input from colleagues, especially from G. Narlikar on energetics of remodeller mechanisms, D. Herschlag on coupled vectorial processes, J.s Buchner and F. U. Hartl on molecular chaperones, R. Louder on remodeller compositions and P. Becker on remodellers by and large. This work was funded by NIGMS (R01GM135651 and R01GM144559 to Y.H.), the German Research Foundation (SFB/CRC1064 ‘Chromatin dynamics’ to P.K. and K.P.H.) and the European Molecular Biology Laboratory (S.E.). We especially appreciate cofunding the costs of generating animations by the German Research Foundation’s grant SFB/CRC1064 to P.K. and K.-P.H.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Yuan He or Philipp Korber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Zhucheng Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

COSMIC: https://cancer.sanger.ac.uk/cosmic

Supplementary information

41580_2023_683_MOESM1_ESM.mp4

Supplementary Video 1. Nucleosome organization by ATP-dependent chromatin remodellers at gene promoters. Inside the nucleus, wrapping of DNA around histone proteins forms nucleosomes. Nucleosomes have some intrinsic flexibility but cannot move along much or leave the DNA without ATP-dependent chromatin remodellers. Chromatin remodellers come in different types, mostly large multisubunit complexes, but some are monomers. Their signature feature is a motor ATPase, highlighted in red that converts ATP hydrolysis energy into nucleosome remodelling. The remodelling outcome is remodeller-specific as remodellers differ in their intrinsic and context-dependent recruitment, regulation and release mechanisms. Here we show how the cooperation between remodeller-specific activities shapes nucleosome architecture of yeast promoters and genes. No strict temporal order of remodellers' activities is implied and remodellers may also work in parallel. Nucleosomes restrict access to DNA. Here, a gene promoter, marked in red, is part of a nucleosome and therefore inaccessible. Certain chromatin remodellers, such as RSC from yeast, can disassemble nucleosomes by histone eviction. This generates a nucleosome-free region with accessible DNA. Such accessible DNA can be bound by sequence-specific DNA-binding factors that may help establish and maintain the nucleosome-free region as well as serve as reference points, also called boundaries or barriers, for nucleosome positioning. Some remodellers, like the INO80 complex, are able to position nucleosomes relative to such barriers or to neighbouring nucleosomes or to DNA sequence features. In this case, INO80 determines the position of the first nucleosome downstream of the promoter, the so-called +1 nucleosome, relative to the barrier protein and likely also according to DNA sequence properties underlying the +1 nucleosome position. SWR1 is a histone exchanger, another type of chromatin remodeller. SWR1 releases a canonical histone H2A–H2B dimer and replaces it with a variant H2A.Z–H2B dimer. Several remodeller types, for example members of the ISWI family, reposition nucleosomes relative to neighbouring nucleosomes. This spacing activity generates arrays of evenly spaced nucleosomes, a conserved hallmark of chromatin. The coordinated remodeller-specific activities generate a nucleosome organization at the promoter that is conducive for transcription. RNA polymerase, together with other transcription factors that are not shown, assembles at the promoter and transcribes the gene. This disrupts nucleosomes and array regularity. Remodellers, such as Chd1, aid in transcription through nucleosomes and restoration of the regular array.

41580_2023_683_MOESM2_ESM.mp4

Supplementary Video 2. Architecture and mechanisms of the SWI/SNF-family remodeller RSC. The SWI/SNF family comprises multisubunit chromatin remodellers composed of a rigid core that tethers a flexible motor ATPase, the tail and ARP modules and various other smaller domains that recognize DNA and histone marks. RSC, a member of the SWI/SNF remodeller family in yeast, is responsible for maintaining nucleosome-free regions by nucleosome disassembly from gene promoters. RSC’s bromodomains bind to acetylated histone H3 tails of the nucleosome, whereas the Sfh1 helix binds to the acidic patch on the nucleosome side where DNA exits during remodelling. In addition, the SnAC domain of the ATPase subunit binds to the entry side acidic patch of the nucleosome. Next, the motor ATPase domain engages the nucleosome. During nucleosome remodelling, the RSC core and the SnAC domain bind the histone octamer while the ATPase translocates the DNA. The motor ATPase remodels the nucleosome in one base pair steps, causing the DNA to be translocated relative to the histone octamer, maybe with asynchrony between entry and exit side, leading in the end to nucleosome sliding. As described first for INO80, motor, rotor, stator and grip elements can be identified in analogy to electric motors. These may ensure that the motor ATPase remains in place and can break histone–DNA contacts. Thereby, RSC activity may achieve eviction of histones. Either sliding or eviction can expose promoter DNA.

41580_2023_683_MOESM3_ESM.mp4

Supplementary Video 3. Architecture and mechanisms of the INO80-family remodeller INO80. The 15-subunit yeast INO80 complex comprises three modules: the core module, the Arp-module and a species-specific Nhp10 module. The core module remodels nucleosomes, like promoter +1 nucleosomes, while the Arp- and Nhp10 modules sense adjacent free DNA. The complex is named after its Ino80 subunit, highlighted here in red and also shown schematically. It harbours the motor ATPase, is a scaffold for assembly and mediates regulation of all three modules. The Ino80 N terminus assembles the Nhp10 module. The central HSA domain binds DNA and the Arp module subunits. The post-HSA domain regulates the motor ATPase. DNA recognition by the Arp module allosterically controls the remodelling activity. The Ino80 motor ATPase has a long insertion, which is captured in the central chamber of the hexameric Rvb1/2 ring. This assembly is a recruitment platform for other subunits and determines how the core module clasps and remodels the nucleosome. The DNA is bound at the entry side by the motor ATPase and on the opposite side by Arp5. The histone octamer is bound at the entry as well as exit side acidic patches. The way INO80 and other multisubunit remodellers bind to the nucleosome suggests motor, rotor, stator and grip elements similar to the functional elements of electric motors. Fuelled by ATP hydrolysis, the motor ATPase rotates the entry DNA relative to the Rvb1/2 stator. Coupling of this stator to the Arp5 grip ensures that the motor stays in place while DNA is translocated. Successive rounds of step-wise translocation may underwind DNA and build up strain against the Arp5 grip. The response to such strain depends on sequence-specific mechanics of tilting, rolling, twisting, shifting and sliding of the DNA base pairs. If sufficient DNA strain can be generated, a wave of multiple DNA base pairs may propagate beyond the Arp5 grip around the histone octamer. A series of such DNA translocation steps can result in large nucleosome sliding steps. Transient destabilization of DNA contacts to histone H2A and H2B may explain other remodelling outcomes such as histone exchange. The ratchet-like remodelling linked to sensing promoter DNA by the Arp module may translate DNA sequence mechanics into +1 nucleosome positioning by INO80. Overall, INO80 works like a hub where input information from the DNA sequence, histone modifications, nucleosome neighbours and other factors is processed through its intrinsic mechanism into a functional output.

41580_2023_683_MOESM4_ESM.mp4

Supplementary Video 4. Architecture and mechanism of the CHD-family remodeller Chd1. Chd1 is a monomeric chromatin remodeller that is primarily involved in maintaining regular arrays in transcribed regions. Chd1 has three domains: tandem chromodomains, a motor ATPase and a DNA-binding domain. The N-terminal ChEx motif functions to block opposing remodellers by direct association with the histone core. Chd1 has been shown to bind the nucleosome involving a 15-degree swinging movement of the double chromodomains. In addition, DNA can be peeled from the histone octamer. The mechanistic role of this is still unclear, but in the end the ATPase closes and is activated. The ratcheting movement of the ATPase induces a local A-form DNA geometry, allowing its translocation towards the nucleosome dyad. The location of the DNA-binding domain is not shown during active DNA translocation by Chd1 as it is currently debated if the DNA-binding domain then binds to the exit or entry DNA.

Supplementary Information

Glossary

3D–1D diffusion model of transcription factors

Classical model describing how transcription factors find their genomic binding sites by a combination of 3D diffusion between stretches of DNA and 1D diffusion along the DNA.

ATPase fold

Evolutionarily conserved protein fold that confers ATP binding and hydrolysis activity.

Barrier

Alignment points on the DNA that enable array phasing and often correspond to sequence-specific DNA-binding proteins but may also consist of a nucleosome itself or a DNA end.

CCCTC-binding factor

(CTCF) A ubiquitously expressed, essential and highly conserved protein in mammals that modulates chromatin architecture, for example in loop extrusion by cohesins.

Chromatin states

Different compositions and configurations of chromatin, including DNA methylation, that regulate genome functions such as regulating transcription and DNA replication.

DNA shape and mechanics

The DNA sequence specifies DNA mechanical properties both of the ground-state (DNA shape) and during dynamic distortions, for example, during DNA tracking by helicases, polymerases or remodellers.

Entry DNA

Nucleosome DNA that is moved towards the dyad during ATP-dependent remodelling.

Epigenetic regulation

Stable and sometimes heritable regulation of genome activities through differential chromatin states without alterations of the DNA sequence.

Exit DNA

Nucleosome DNA that is moved away from the dyad during ATP-dependent remodelling.

H2A–H2B acidic patch

Negatively charged surface patch of the histone H2A–H2B dimer, which serves as a binding platform where various chromatin factors bind the histone core.

Histone elbow

First helix and loop of histone H3 and H2B, which serve as a binding platform where various chromatin factors bind the histone core.

Lowered entropy

According to the second law of thermodynamics, if a system becomes more defined (‘ordered’) its entropy is lowered and its free energy is increased.

Noncanonical nucleosomal particles

Particles that differ from canonical nucleosomes in their histone stoichiometry, structural plasticity and mode of DNA wrapping.

Nucleosome organization

The compositions and positions of nucleosomes along the genome, including noncanonical nucleosomal particles.

Phased

Nucleosome arrays are phased if in many DNA molecules (for example, in a cell population) they begin at the same (for example, a certain genomic coordinate) or at an analogous position (for example, at the same distance to the TSS).

Pseudo-two-fold symmetry dyad axis

The axis along an NCP can have a twofold rotational symmetry, even though the DNA sequence usually breaks the symmetry.

Self-assembly

Refers to the association of constituents, according to constituent-intrinsic properties, into a structure at equilibrium, for example, a native protein structure or a nucleic acid double helix.

Self-organization

Constituents become organized according to local and constituent-intrinsic properties and without global ‘template’ or ‘blueprint’ information into a dynamic steady-state that continuously undergoes turnover and requires net energy flux.

Spaced nucleosomes

Nucleosome spacing refers to the distance between NCPs, that is the length of linker DNA.

Subsite

Part of a binding site to which a particular functionality can be assigned, for example containing a sequence motif or being involved in ligand recognition.

Twist

Describes the angle of rotation around the DNA double helix axis from one base pair to the next along a DNA duplex.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eustermann, S., Patel, A.B., Hopfner, KP. et al. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 25, 309–332 (2024). https://doi.org/10.1038/s41580-023-00683-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00683-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing