Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-05T01:19:41.277Z Has data issue: false hasContentIssue false

Remnant Rhine delta population of Great Reed Warblers maintains high diversity in migration timing, stopping sites, and winter destinations

Published online by Cambridge University Press:  11 December 2023

Jan van der Winden*
Affiliation:
Jan van der Winden, Ecology, Research and Consultancy, Utrecht, The Netherlands BirdEyes – Centre for Global Ecological Change and Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
Peter W. van Horssen
Affiliation:
Greenstat, Tricht, The Netherlands
Symen Deuzeman
Affiliation:
Sovon Vogelonderzoek Nederland, Nijmegen, The Netherlands
Theunis Piersma
Affiliation:
BirdEyes – Centre for Global Ecological Change and Conservation Ecology Group, University of Groningen, Groningen, The Netherlands NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
*
Corresponding author: Jan van der Winden; Email: jvdwinden@hetnet.nl

Summary

Many Afro-Palearctic songbird migrants have declined, with conservation efforts mainly focused on the restoration of breeding habitat. However, pressures outside the breeding season might play a role. This includes the possibility that local relict populations no longer maintain the original phenotypic variation in migration patterns, with a loss of flexibility. The Great Reed Warbler Acrocephalus arundinaceus kept stable population levels in central and eastern Europe, but was almost extinct in the western part of the breeding range. In the Rhine delta the population declined from 10,000 individuals around 1950, to fewer than 100 at present. Here we document migratory timing, routes, and destinations of members of this remnant songbird population. It turned out that the remaining adults still showed high diversity in migratory phenotypes. This is even true in each of the two last tiny subpopulations in the Netherlands (of 50 and 15 pairs). So, even very small populations maintain the possible adaptive phenotypic variation, and with hindsight this justifies the breeding habitat restoration efforts currently underway.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bijlsma, R.G., Hustings, F. and Camphuysen, C.J. (2001). Algemene en Schaarse Vogels van Nederland. Avifauna van Nederland 2. Haarlem: GMB Uitgeverij/Utrecht: KNNV Uitgeverij.Google Scholar
BirdLife International (2004). Acrocephalus arundinaceus Great Reed Warbler. In Birds in Europe: Population Estimates, Trends and Conservation Status. Cambridge: BirdLife International, p. 223.Google Scholar
Brlık, V., Kolecek, J., Burgess, M., Hahn, S., Humple, D., Krist, M. et al. (2020). Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. Journal of Animal Ecology 89, 207220.CrossRefGoogle ScholarPubMed
Burgess, M.D., Finch, T., Border, J.A., Castello, J., Conway, G., Ketcher, M. et al. (2020). Weak migratory connectivity, loop migration and multiple non‐breeding site use in British breeding Whinchats Saxicola rubetra. Ibis 162, 12921302. https://doi.org/10.1111/ibi.12825.CrossRefGoogle Scholar
Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197, 516519.CrossRefGoogle Scholar
Dolman, P.M. and Sutherland, W.J. (1995). The response of bird populations to habitat loss. Ibis 137, 3846.CrossRefGoogle Scholar
Foppen, R. (2001). Bridging Gaps in Fragmented Landscapes. Dissertation, Wageningen University, Wageningen.Google Scholar
Fox, J.W. (2018). Intigeo® Geolocator Manual. Cambridge: Migrate Technology.Google Scholar
Gilroy, J.J., Gill, J.A., Butchart, S.H.M., Jones, V.R. and Franco, A.M.A. (2016). Migratory diversity predicts population declines in birds. Ecology Letters 19, 308317.CrossRefGoogle ScholarPubMed
Hansson, B., Bensch, S., Hasselquist, D. and Nielsen, B. (2002). Restricted dispersal in a long-distance migrant bird with patchy distribution, the great reed warbler. Oecologia 130, 536542.CrossRefGoogle Scholar
Horns, J.J., Buechley, E., Chynoweth, M., Aktay, L., Coban, E., Kırpık, M.A. et al. (2016). Geolocator tracking of Great Reed-Warblers (Acrocephalus arundinaceus) identifies key regions for migratory wetland specialists in the Middle East and sub-Saharan East Africa. The Condor 118, 835849.CrossRefGoogle Scholar
Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P. et al. (2020). European Breeding Bird Atlas 2: Distribution, Abundance and Change. Barcelona: European Bird Census Council/Lynx Edicions,Google Scholar
Koleček, J., Procházka, P., El-Arabany, N., Tarka, M., Ilieva, M., Hahn, S. et al. (2016). Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. Journal of Avian Biology 47, 756767.CrossRefGoogle Scholar
Leisler, B. and Schulze-Hagen, K. (2011). The Reed Warblers. Diversity in a Uniform Bird Family. Zeist: KNNV Uitgeverij.CrossRefGoogle Scholar
Lemke, H.W., Tarka, M., Klaassen, R.H.G., Akesson, M., Bensch, S., Hasselquist, D. et al. (2013). Annual cycle and migration strategies of a trans-Saharan migratory songbird: A geolocator study in the Great Reed Warbler. PLOS One 8, e79209.CrossRefGoogle ScholarPubMed
Lisovski, S., Bauer, S., Briedis, M., Davidson, S.C., Dhanjal‐Adams, K.L., Hallworth, M.T. et al. (2020). Light‐level geolocator analyses: A user’s guide. Journal of Animal Ecology 89, 221236.CrossRefGoogle ScholarPubMed
Lisovski, S. and Hahn, S. (2012). GeoLight – Processing and analysing light-based geolocator data in R. Methods in Ecology and Evolution 3, 10551059.CrossRefGoogle Scholar
Lisovski, S., Wotherspoon, S. and Sumner, M.D. (2016). TwGeos: Basic Data Processing for Light-level Geolocation Archival Tags. R package version 0.1.2.Google Scholar
Ouwehand, J., Ahola, M.P., Ausems, A.N.M.A., Bridge, E.S., Burgess, M., Hahn, S. et al. (2016). Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca. Journal of Avian Biology 47, 6983.CrossRefGoogle Scholar
QGIS Development Team (2009). QGIS Geographic Information System. Manual.Google Scholar
R Foundation for Statistical Computing (2020). R: A Language and Environment for Statistical Computing. https://www.R-project.org/.Google Scholar
Rappole, J.H. and Tipton, A.R. (1991). New harness design for attachment of radio transmitters to small passerines. Journal of Field Ornithology 62, 335337.Google Scholar
Sjöberg, S., Malmiga, G., Nord, A., Andersson, A., Bäckman, J., Tarka, M. et al. (2021). Extreme altitudes during diurnal flights in a nocturnal songbird migrant. Science 372, 646648.CrossRefGoogle Scholar
Sovon Vogelonderzoek Nederland (2018). In Vogelatlas van Nederland. Utrecht: Kosmos Publishers, pp. 450451.Google Scholar
Van der Winden, J., Deuzeman, S., Weeda, S., Foppen, R., van Horssen, P. and Poot, M. (2020). Broedsucces en nesthabitat van de Grote Karekiet in begraasde rietkragen in de kerngebieden. Limosa 93, 153164.Google Scholar
Vickery, J.A., Ewing, S.R., Smith, K.W., Pain, D.J., Bairlein, F., Skorpilova, J. et al. (2014). The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 122.CrossRefGoogle Scholar
Zwarts, L., Bijlsma, R.G., van der Kamp, J. and Wymenga, E. (2009). Living on the Edge . Wetlands and Birds in a Changing Sahel. Zeist: KNNV Uitgeverij.Google Scholar
Supplementary material: File

van der Winden et al. supplementary material
Download undefined(File)
File 63.9 KB