Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T18:31:06.423Z Has data issue: false hasContentIssue false

Invariant measures for substitutions on countable alphabets

Published online by Cambridge University Press:  11 December 2023

WEBERTY DOMINGOS
Affiliation:
Departamento de Matemática, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil (e-mail: domingos.silva@unesp.br)
SÉBASTIEN FERENCZI
Affiliation:
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, I2M - UMR 7373, 13453 Marseille, France (e-mail: ferenczi@iml.univ-mrs.fr)
ALI MESSAOUDI*
Affiliation:
Departamento de Matemática, Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil
GLAUCO VALLE
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (e-mail: glauco.valle@im.ufrj.br)

Abstract

In this work, we study ergodic and dynamical properties of symbolic dynamical system associated to substitutions on an infinite countable alphabet. Specifically, we consider shift dynamical systems associated to irreducible substitutions which have well-established properties in the case of finite alphabets. Based on dynamical properties of a countable integer matrix related to the substitution, we obtain results on existence and uniqueness of shift invariant measures.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bezugly, S., Jorgensen, P. E. T. and Sanadhya, S.. Measures and generalized Bratteli diagrams for dynamics of infinite alphabet-substitutions. Preprint, 2022, arXiv:2203.14127.Google Scholar
Canterini, V. and Siegel, A.. Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353(12) (2001), 51215144.CrossRefGoogle Scholar
Dobrushin, R.. Central limit theorem for non-stationary Markov chains, I. Teor. Veroyatnost. i Primenen. 1 (1956), 7289.Google Scholar
Durand, F., Ormes, N. and Petite, S.. Self-induced systems. J. Anal. Math. 135(2) (2018), 725756.CrossRefGoogle Scholar
Durrett, R.. Probability: Theory and Examples, 4th edn. Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
Ferenczi, S.. Substitution dynamical systems on infinite alphabets. Ann. Inst. Fourier (Grenoble) 56(7) (2006), 23152343.CrossRefGoogle Scholar
Huang, C. C., Isaacson, D. and Vinograde, B.. The rate of convergence of certain non-homogeneous Markov chains. Z. Wahrscheinlickhkeitstheorie Verw. Gebeite 35 (1976), 14ll46.Google Scholar
Isaacson, D. and Madsen, R.. Markov Chains. Wiley Interscience, New York, 1976.Google Scholar
Kitchens, B. P.. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts (Universitext). Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar
Lawler, G.. Intersections of Random Walks (Probability and Its Applications Series). Springer Science+Business Media, New York, 1991.Google Scholar
Levin, D. A., Peres, Y. and Wilmer, E. L.. Markov Chains and Mixing Times. American Mathematical Society, Providence, RI, 2009; with a chapter by J. G. Propp and D. B. Wilson.Google Scholar
Luecke, G. R. and Isaacson, D. I.. Strongly ergodic Markov chains and rates of convergence using spectral condtions. Stochastic Process. Appl. 7 (1978), 113121.Google Scholar
Manibo, N., Rust, D. and Walton, J. J.. Substitutions on compact alphabets. Preprint, 2022, arXiv:2204.07516.Google Scholar
Martin, J. C.. Minimal flows arising from substitutions of non-constant length. Math. Systems Theory 7 (1973), 7282.CrossRefGoogle Scholar
Mauduit, C.. Propriétés arithmétiques des substitutions et automates infinis. Ann. Inst. Fourier (Grenoble) 56(7) (2006), 25252549.CrossRefGoogle Scholar
Michel, P.. Stricte ergodicité d’ensembles minimaux de substitutions. C. R. Math. Acad. Sci. Paris 278 (1974), 811813.Google Scholar
Mossé, B.. Reconnaissabilité des substitutions et complexité des suites automatiques. Bull. Soc. Math. France 124(2) (1996), 329346.CrossRefGoogle Scholar
Pytheas Fogg, N., Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Springer-Verlag, Berlin, 2002.CrossRefGoogle Scholar
Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer-Verlag, Berling, 1987.CrossRefGoogle Scholar
Seneta, E.. Non-negative Matrices an Markov Chains. Springer, New York, NY, 1973.Google Scholar
Vere-Jones, D.. Geometric ergodicity in denumbrable Markov chains. Q. J. Math. 13 (1962), 728.CrossRefGoogle Scholar
Vere-Jones, D.. Ergodic properties of nonnegative matrices. I. Pacific J. Math. 22 (1967), 361386.CrossRefGoogle Scholar