Skip to main content
Log in

Size and Content Effects of Copper Nanoparticles in the Ion-Exchange Matrix for Intense Steady-State Electroreduction of Oxygen Dissolved in Water

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The behavior of copper ion-exchange composites with metal particles of various sizes and contents in the electroreduction of oxygen dissolved in water have been studied. The primary size effect is significant for samples with low metal capacity: the smaller the metal particle size, the higher the process rate. At the same time, for samples with high metal capacity, the process occurs at approximately the same rate on copper particles obtained using different reducing agents due to the comparable size. A secondary size effect is observed due to the collective interaction of metal particles. The size effect was taken into account along with the effect of the content of metal particles using the proposed nanosized complex, which represents the ratio of capacity and size. At the level of electronic conductivity percolation, the nanosized complex reaches the limiting value corresponding to the highest degree of development of the reaction surface, which makes it possible to increase the current to the maximum current capacity. The reduction of oxygen occurs along several routes: electroreduction on copper particles, mainly on the surface of nanocomposite grains; and autocatalytic chemical reaction with electroregenerated metal nanoparticles in the nanocomposite grains. The electroreduction of oxygen generally reaches an intense steady-state mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. V. Sergeev, Nanochemistry: The School Book (KDU, Moscow, 2007) [in Russian].

    Google Scholar 

  2. O. V. Krylov, Heterogeneous Catalysis, The School Book for Higher Schools (Akademkniga, Moscow, 2004) [in Russian].

    Google Scholar 

  3. V. I. Roldugin, Physicochemistry of a Surface (Intellekt, Dolgoprudnyi, 2008) [in Russian].

  4. I. P. Suzdalev, Nanotechnology: Physicochemistry of Clusters, Nanostructures, and Nanomaterials (Komkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  5. Ch. Pool and F. Owens, Nanotechnologies (Wiley, Hoboken, NJ, 2003).

    Google Scholar 

  6. I. V. Melikhov, Physicochemical Evolution of Solid State (BINOM, Labor. Znanii, Moscow, 2009) [in Russian].

    Google Scholar 

  7. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand, Nanoparticles of Metals in Polymers (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  8. O. V. Sergeeva and S. K. Rakhmanov, Introduction to Nanochemistry, The School-Book for Students (BGU, Minsk, 2009) [in Russian].

    Google Scholar 

  9. I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  10. O. V. Tripachev and M. R. Tarasevich, Russ. J. Phys. Chem. A 87, 820 (2013).

    Article  CAS  Google Scholar 

  11. Y. Lu and W. Chen, J. Power Sources 197, 107 (2012).

    Article  CAS  Google Scholar 

  12. B. R. Cuenya and F. Behafarid, Surf. Sci. Rep. 70, 135 (2015).

    Article  Google Scholar 

  13. S. Sarkar, E. Guibal, F. Quignard, et al., J. Nanopart. Res. 14, 714 (2012).

    Article  Google Scholar 

  14. H. Erikson, M. Lusi, A. Sarapuu, et al., Electrochim. Acta 188, 301 (2016).

    Article  CAS  Google Scholar 

  15. T. Selvaraju and R. Ramaraj, Pramana 65, 713 (2005).

    Article  CAS  Google Scholar 

  16. Ch.-Ch. Ting, Ch.-Hs. Liu, Ch.-Y. Tai, et al., J. Power Sources 280, 166 (2015).

    Article  CAS  Google Scholar 

  17. R. Reske, H. Mistry, F. Behafarid, et al., J. Am. Chem. Soc. 136, 6978 (2014).

    Article  PubMed  CAS  Google Scholar 

  18. M. Nesselberger, M. Roefzaad, R. F. Hamou, et al., Nat. Mater., No. 12, 919 (2013).

  19. S. Proch, M. Wirth, H. S. White, et al., J. Am. Chem. Soc. 135, 3073 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. P. A. Chernavsky, G. V. Pankina, M. I. Ivantsov, and A. Yu. Khodakov, Russ. J. Phys. Chem. A 87, 1349 (2013).

    Article  Google Scholar 

  21. I. N. Leontyev, S. V. Belenov, V. E. Guterman, et al., J. Phys. Chem. C 115, 5429 (2011).

    Article  CAS  Google Scholar 

  22. A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012).

    Article  Google Scholar 

  23. T. A. Kravchenko, L. N. Polyanskii, A. I. Kalinichev, and D. V. Konev, Metal-Ion Exchanger Nanocomposites (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  24. T. A. Kravchenko, E. V. Zolotukhina, M. Yu. Chaika, and A. B. Yaroslavtsev, Electrochemistry of Metal-Ion-Exchange Nanocomposites (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  25. T. A. Kravchenko, D. D. Vakhnin, V. E. Pridorogina, and M. F. Shafrova, Russ. J. Electrochem. 55, 1251 (2019).

    Article  CAS  Google Scholar 

  26. D. D. Vakhnin, L. N. Polyanskii, T. A. Kravchenko, V. E. Pridorogina, and N. A. Zheltoukhova, Russ. J. Phys. Chem. A 93, 951 (2019).

    Article  CAS  Google Scholar 

  27. T. E. Fertikova, S. V. Fertikov, E. M. Isaeva, et al., Kondens. Sredy Mezhfaz. Granitsy 23 (43), 614 (2021).

    CAS  Google Scholar 

  28. D. D. Vakhnin, T. E. Fertikova, L. N. Polyanskii, et al., Nanobiotechnol. Rep. 17, 811 (2022).

    Article  Google Scholar 

  29. SanPiN 2.1.3684-21: Sanitary and epidemiological requirements for the maintenance of territories of urban and rural settlements, for water bodies, drinking water and drinking water supply, atmospheric air, soils, residential premises, operation of industrial and public premises, organization and implementation of sanitary and anti-epidemic (preventive) measures.

  30. SanPiN 1.2.3685-21: Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors to humans.

  31. T. A. Kravchenko, E. A. Shevtsova, and V. A. Krysanov, Sorbts. Khromatogr. Prots. 21 (5), 630 (2021).

    CAS  Google Scholar 

  32. T. A. Kravchenko, L. N. Polyanskii, V. A. Krysanov, et al., in Proceedings of the 16th Workshop on Fundamental Problems of Solid State Ionics, Moscow Region, Chernogolovka, June 27–July 3, 2022, p. 171. http://fpssi16.altes.su/.

    Google Scholar 

  33. L. I. Mirkin, X-ray Diffraction Analysis. Help Guide: Taking and Measuring Radiographs (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  34. D. N. Muraviev, B. Domenech, J. Bastos-Arrieta, et al., in Ion Exchange Technologies (InTech Open, Rijeka, 2012), p. 35.

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation under the government contract with universities regarding scientific research for 2023–2025 (project no. FZGU-2023-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kravchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, T.A., Fertikova, T.E., Golovin, I.A. et al. Size and Content Effects of Copper Nanoparticles in the Ion-Exchange Matrix for Intense Steady-State Electroreduction of Oxygen Dissolved in Water. Russ. J. Phys. Chem. 97, 2768–2776 (2023). https://doi.org/10.1134/S0036024423120154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120154

Keywords:

Navigation