Skip to main content
Log in

Protolytic Equilibrium of Glycine and Glycylglycine: Structure of Ionic Forms and Solvent Effect on the Thermodynamic Parameters of Processes

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Quantum-chemical calculations of the structure of the molecular forms of glycine and glycylglycine and conjugate ionic forms have been performed. Our own and published data on the thermodynamic characteristics of the reactions of acid–base interactions of glycine and glycylglycine in aqueous organic solutions are summarized, and the influence of the composition of mixed solvents on the acid dissociation constant of the amide group in the copper(II) peptide complex is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Rai, R. Ferrao, P. Palma, et al., J. Mater. Chem. B, No. 10, 2384 (2022). https://doi.org/10.1039/d1tb02617h

  2. V. Kh. Khavinson, Klin. Med. 98 (3), 165 (2020). https://doi.org/10.30629/0023-2149-2020-98-3-165-177

    Article  Google Scholar 

  3. I. Diaz, J. Namkoong, J. Qiang Wu, and G. Giancola, J. Cosmet. Dermatol. 21, 3046 (2022). https://doi.org/10.1111/jocd.14544

    Article  PubMed  Google Scholar 

  4. D. Wyrzykowski, A. Kloska, M. Zdrowowicz, et al., Polyhedron 222, 115948 (2022). https://doi.org/10.1016/j.poly.2022.115948

  5. I. H. Karahan, Sci. World J. 10, 273953 (2013). https://doi.org/10.1155/2013/273953

  6. R. Sekar, K. K. Jagadesh, and G. N. K. Ramesh Bapu, Trans. IMF 93, 132 (2015). https://doi.org/10.1179/0020296715Z.000000000239

    Article  CAS  Google Scholar 

  7. S. Lin, X. Chen, H. Chen, et al., Engineering (2022). https://doi.org/10.1016/j.eng.2022.08.011

  8. G. Wu, Adv. Exp. Med. Biol. 1354, 1 (2022). https://doi.org/10.1007/978-3-030-85686-1_1

    Article  PubMed  CAS  Google Scholar 

  9. P. Baindara and S. M. Mandal, Foods 11, 2415 (2022). https://doi.org/10.3390/foods11162415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. P. Yudaev and E. Chistyakov, Metals 12, 1275 (2022). https://doi.org/10.3390/met12081275

    Article  CAS  Google Scholar 

  11. S. Patil, P. B. Pawar, S. D. Jadhav, and M. B. Deshmukh, Asian J. Chem. 25, 9442 (2013). https://doi.org/10.14233/ajchem.2013.15018

    Article  CAS  Google Scholar 

  12. L. Malavolta, M. R. S. Pinto, J. H. Cuvero, and C. R. Nakaie, Protein Sci. 15, 1476 (2006). https://doi.org/10.1110/ps.051956206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. P. Ledwon, F. Errante, A. M. Papini, et al., Chem. Biodivers. 18, e2000833 (2021). https://doi.org/10.1002/cbdv.202000833

  14. V. V. Kuznetsov, L. N. Pavlov, E. A. Filatova, and E. G. Vinokurov, J. Solid State Electrochem. 24, 1711 (2020). https://doi.org/10.1007/s10008-017-3728-7

    Article  CAS  Google Scholar 

  15. U. Masaaki, S. Takashi, S. Jun, et al., Bull. Chem. Soc. Jpn. 61, 3653 (1988). https://doi.org/10.1246/bcsj.61.3653

    Article  Google Scholar 

  16. M. D. Korotkin, S. M. Filatova, Z. G. Denieva, et al., Tonk. Khim. Tekhnol. 17 (1), 50 (2022). https://doi.org/10.32362/2410-6593-2022-17-1-50-64

    Article  CAS  Google Scholar 

  17. A. A. Granovsky, Firefly Computational Chemistry Program, Version 8. http://classic.chem.msu.su/gran/firefly/index.html.

  18. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  20. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992). https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  21. G. A. Zhurko and D. A. Zhurko, Chemcraft–graphical program for working with quantum chemistry computations. http://www.chemcraftprog.com/index.html.

  22. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  PubMed  CAS  Google Scholar 

  23. G. L. Eichhorn, Inorganic Biochemistry (Elsevier Sci., Amsterdam, 1973), Vol. 1.

    Google Scholar 

  24. V. A. Isaeva, A. S. Molchanov, K. A. Kipyatkov, K. V. Grazhdan, and E. S. Rothanov, Russ. J. Phys. Chem. A 94, 2024 (2020). https://doi.org/10.1134/S0036024420100155

    Article  CAS  Google Scholar 

  25. V. A. Isaeva, N. V. Ganicheva, and V. A. Sharnin, Russ. J. Phys. Chem. A 76, 1953 (2002).

    Google Scholar 

  26. V. V. Naumov, V. A. Isaeva, and V. A. Sharnin, Russ. J. Inorg. Chem. 56, 1139 (2011). https://doi.org/10.1134/S0036023611070199

    Article  CAS  Google Scholar 

  27. V. A. Isaeva and V. A. Sharnin, Russ. J. Phys. Chem. A 92, 2176 (2018). https://doi.org/10.1134/S003602441811016x

    Article  CAS  Google Scholar 

  28. L. A. Kochergina, A. V. Emel’yanov, G. G. Gorboletova, and O. N. Krutova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 54 (1), 78 (2011).

    CAS  Google Scholar 

  29. V. A. Isaeva, V. A. Sharnin, and V. A. Shormanov, Russ. J. Phys. Chem. A 71, 1226 (1997).

    Google Scholar 

  30. S. A. Bychkova, A. N. Katrovtseva, E. V. Kozlovskii, and V. N. Vasil’ev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 50 (7), 16 (2007).

    CAS  Google Scholar 

  31. V. A. Sharnin and N. V. Tukumova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 50 (6), 24 (2007).

    CAS  Google Scholar 

  32. L. A. Kochergina, A. V. Emel’yanov, and O. N. Krutova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 55 (11), 28 (2012).

    CAS  Google Scholar 

  33. L. A. Kochergina, A. V. Emel’yanov, O. N. Krutova, and G. G. Gorboletova, Russ. J. Phys. Chem. A 81, 1632 (2007). https://doi.org/10.1134/S0036024407100160

    Article  CAS  Google Scholar 

  34. N. N. Kuranova, S. V. Dushina, and V. A. Sharnin, Russ. J. Phys. Chem. A 84, 792 (2010). https://doi.org/10.1134/S0036024410050146

    Article  CAS  Google Scholar 

  35. H. Harned and B. Owen, The Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1950).

    Google Scholar 

  36. V. A. Isaeva, V. A. Sharnin, V. A. Shormanov, and I. A. Baranova, Russ. J. Phys. Chem. A 70, 1320 (1996).

    CAS  Google Scholar 

  37. S. K. Chakravorty and S. C. Lahiri, J. Indian Chem. Soc. 64, 399 (1987).

    CAS  Google Scholar 

  38. A. A. El-Sherif, M. M. Shoukry, A. T. Abd Elkarim, and M. H. Barakat, Bioinorg. Chem. Appl. 2014, 626719 (2014). https://doi.org/10.1155/2014/626719

  39. Z. F. Gesse, V. A. Isaeva, G. I. Repkin, and V. A. Sharnin, Russ. J. Phys. Chem. A 86, 53 (2012). https://doi.org/10.1134/S0036024412010104

    Article  CAS  Google Scholar 

  40. A. Brunetti, M. Lim, and G. Nancollas, J. Am. Chem. Soc. 90, 5120 (1968). https://doi.org/10.1021/ja01021a012

    Article  PubMed  CAS  Google Scholar 

  41. J. J. Christensen, R. M. Izatt, D. P. Wrarhall, and L. D. Hansen, J. Chem. Soc. A, No. 8, 1212 (1969). https://doi.org/10.1039/J19690001212

  42. E. N. Tsurco and Yu. S. Kuchtenko, J. Mol. Liq. 189, 95 (2014). https://doi.org/10.1016/j.molliq.2013.03.023

    Article  CAS  Google Scholar 

  43. A. V. Nishchenkov, V. A. Sharnin, V. A. Shormanov, and G. A. Krestov, Zh. Fiz. Khim. 64, 114 (1990).

    CAS  Google Scholar 

  44. A. V. Nevskii, V. A. Shormanov, and G. A. Krestov, Zh. Fiz. Khim. 61, 2544 (1987).

    CAS  Google Scholar 

  45. L. A. Kochergina and A. V. Emel’yanov, Russ. J. Phys. Chem. A 89, 580 (2015). https://doi.org/10.1134/S0036024415040135

    Article  CAS  Google Scholar 

  46. A. A. El-Sherif, in Stoichiometry and Research–The Importance of Quantity in Biomedicine, Ed. by A. Innocenti (InTech, Rijeka, 2012), p. 79. https://doi.org/10.5772/35667

    Book  Google Scholar 

  47. V. A. Isaeva, A. S. Molchanov, M. V. Shishkin, and V. A. Sharnin, Russ. J. Inorg. Chem. 67, 699 (2022). https://doi.org/10.1134/S0036023622050084

    Article  CAS  Google Scholar 

  48. V. A. Isaeva, V. A. Sharnin, A. S. Molchanov, and K. A. Kipyatkov, Russ. J. Phys. Chem. A 94, 13 (2020). https://doi.org/10.1134/S0036024420010100

    Article  CAS  Google Scholar 

  49. R. B. Martin, M. Chamberlin, and J. T. Edsall, J. Am. Chem. Soc. 82, 495 (1960). https://doi.org/10.1021/ja01487a064

    Article  CAS  Google Scholar 

  50. V. A. Isaeva, S. F. Ledenkov, V. A. Sharnin, and V. A. Shormanov, Koord. Khim. 21, 396 (1995).

    Google Scholar 

  51. K. K. Mui, W. A. E. McBryde, and E. Nieboer, Can. J. Chem. 52, 1821 (1974). https://doi.org/10.1139/v74-261

    Article  CAS  Google Scholar 

  52. H. Gao, X. Hu, and R. Lin, Thermochim. Acta 346, 1 (2000). https://doi.org/10.1016/S0040-6031(99)00397-4

    Article  CAS  Google Scholar 

  53. H. Talukdar, S. Rudra, and K. K. Kund, Can. J. Chem. 67, 315 (1989). https://doi.org/10.1139/v89-052

    Article  CAS  Google Scholar 

  54. V. A. Isaeva, V. V. Naumov, Zh. F. Gesse, and V. A. Sharnin, Russ. J. Phys. Chem. A 83, 396 (2009). https://doi.org/10.1134/S0036024409030133

    Article  CAS  Google Scholar 

  55. V. V. Naumov, V. A. Isaeva, and V. A. Sharnin, Russ. J. Inorg. Chem. 56, 1139 (2011). https://doi.org/10.1134/S0036023611070199

    Article  CAS  Google Scholar 

  56. V. V. Naumov, V. A. Isaeva, V. A. Sharnin, and E. N. Kuzina, Russ. J. Phys. Chem. A 85, 1752 (2011). https://doi.org/10.1134/S003602441110013X

    Article  CAS  Google Scholar 

  57. H. A. Azab, A. M. El-Nady, M. M. A. Hamed, and I. T. Ahmed, J. Chin. Chem. Soc. 42, 769 (1995). https://doi.org/10.1002/jccs.199500103

    Article  CAS  Google Scholar 

  58. B. Srinu, V. G. Kumari, Ch. N. Rao, and B. B. V. Sailaja, Chem. Speciat. Bioavailab. 27, 99 (2015). https://doi.org/10.1080/09542299.2015.1087161

    Article  CAS  Google Scholar 

  59. M. T. Zekarias, B. Y. Hirpaye, and G. N. Rao, Pharma Chem. 3, 69 (2011).

    CAS  Google Scholar 

  60. M. S. Niazi and J. Mollin, Bull. Chem. Soc. Jpn. 60, 2605 (1987). https://doi.org/10.1246/bcsj.60.2605

    Article  CAS  Google Scholar 

  61. L. N. Kuritsyn and N. V. Kalinina, Russ. J. Phys. Chem. A 72, 1685 (1998).

    Google Scholar 

  62. V. P. Vasil’ev, N. K. Grechina, and G. L. Rynova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 25, 948 (1982).

    Google Scholar 

  63. F. Koseoglu, E. Kilic, and A. Dogan, Anal. Biochem. 277, 243 (2000). https://doi.org/10.1006/abio.1999.437

    Article  PubMed  CAS  Google Scholar 

  64. E. Kilic, G. Gokce, and E. Canel, Turk. J. Chem. 26, 843 (2002).

    CAS  Google Scholar 

  65. N. V. Tukumova, T. R. Usacheva, S. N. Aleshin, and V. A. Sharnin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 53 (5), 41 (2010).

    CAS  Google Scholar 

  66. N. V. Tukumova, T. T. D. Thuan, T. R. Usacheva, and V. A. Sharnin, Russ. J. Phys. Chem. A 92, 2593 (2018). https://doi.org/10.1134/S0036024418120452

    Article  CAS  Google Scholar 

  67. B. P. Dey and S. C. Lahiri, J. Ind. Chem. Soc. 87, 29 (2010). https://doi.org/10.5281/zenodo.5775371

    Article  CAS  Google Scholar 

  68. Yu. Yu. Lur’e, Reference Book on Analytical Chemistry, 4th ed. (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  69. H. B. Bull, K. Breese, G. L. Ferguson, and C. A. Swenson, Arch. Biochem. Biophys. 104, 297 (1964). https://doi.org/10.1016/S0003-9861(64)80017-5

    Article  PubMed  CAS  Google Scholar 

  70. M. Lilov and P. P. Kirilov, J. Solution Chem. 47, 930 (2018). https://doi.org/10.1007/s10953-018-0762-8

    Article  CAS  Google Scholar 

  71. J.-Zh. Yang, D.-Zh. Lu, M. Deng, et al., Z. Phys. Chem. 205, 199 (1998). https://doi.org/10.1524/zpch.1998.205.Part_2.199

    Article  CAS  Google Scholar 

  72. L. A. Al-Sindy, J. M. Saleh, and M. H. Matioob, Iraq. J. Sci. 24, 117 (1983).

    Google Scholar 

  73. A. V. Nishchenkov, V. A. Sharnin, V. A. Shormanov, and G. A. Krestov, Zh. Fiz. Khim. 64, 254 (1990).

    Google Scholar 

  74. L. N. Kuritsyn and N. V. Kalinina, Zh. Fiz. Khim. 64, 119 (1990).

    CAS  Google Scholar 

  75. S. Sharma, M. C. Shah, N. Patel, et al., E-J. Chem. 4, 313 (2007). https://doi.org/10.1155/2007/978639

    Article  Google Scholar 

  76. A. A. Pyatachkov, V. A. Shormanov, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 26, 1329 (1983).

    CAS  Google Scholar 

  77. N. V. Kumar and Gh. N. Rao, Chem. Speciat. Bioavailab. 23, 169 (2011). https://doi.org/10.3184/095422911X13103812647902

    Article  CAS  Google Scholar 

  78. V. A. Isaeva, S. F. Ledenkov, V. A. Sharnin, and V. A. Shormanov, Zh. Fiz. Khim. 67, 2202 (1993).

    CAS  Google Scholar 

  79. P. I. Nagy and K. Takacs-Novak, J. Am. Chem. Soc. 119, 4999 (1997). https://doi.org/10.1021/ja963512f

    Article  CAS  Google Scholar 

  80. Yu. Ya. Fialkov, A. N. Zhitomirskii, and Yu. A. Tarasenko, Physical Chemistry of Non-Aqueous Solutions (Khimiya, Leningrad, 1973) [in Russian].

    Google Scholar 

  81. R. C. Dougherty, J. Chem. Phys. 109, 7372 (1998). https://doi.org/10.1063/1.477343

    Article  CAS  Google Scholar 

  82. V. V. Aleksandriiskii, G. A. Gamov, S. V. Dushina, and V. A. Sharnin, J. Mol. Liq. 199, 15 (2014). https://doi.org/10.1016/j.molliq.2014.07.037

    Article  CAS  Google Scholar 

  83. H. W. Ke, L. Rao, X. Xu, and Y. J. Yan, Sci. China Chem. 53, 383 (2010). https://doi.org/10.1007/s11426-010-0065-4

    Article  CAS  Google Scholar 

  84. C. M. Aikens and M. S. Gordon, J. Am. Chem. Soc. 128, 12835 (2006). https://doi.org/10.1021/ja062842p

    Article  PubMed  CAS  Google Scholar 

  85. R. M. Balabin, J. Phys. Chem. Lett. 1, 20 (2010). https://doi.org/10.1021/jz900068n

    Article  CAS  Google Scholar 

  86. I. R. Askarov, M. Kh. Mamarakhmonov, and Sh. A. Obidova, Universum: Tekh. Nauki 84 (3) (2021). https://7universum.com/ru/tech/archive/item/11452

  87. A. Gordon and R. Ford, The Chemists Companion (Wiley, New York, 1972).

    Google Scholar 

  88. W. Goro, T. Eiko, O. Mitsuko, and N. Mariko, Bull. Chem. Soc. Jpn. 55, 3064 (1982). https://doi.org/10.1246/bcsj.55.3064

    Article  Google Scholar 

  89. K. V. Grazhdan, G. A. Gamov, S. V. Dushina, and V. A. Sharnin, Russ. J. Phys. Chem. A 86, 1679 (2012). https://doi.org/10.1134/S0036024412110131

    Article  CAS  Google Scholar 

  90. L. Gang, L. Rui-Sen, and Z. Han-Xing, Acta Phys-Chim. Sin. 16, 188 (2000). https://doi.org/10.3866/PKU.WHXB20000218

    Article  Google Scholar 

  91. E. N. Tsurco, T. M. Shihova, and N. V. Bondarev, J. Mol. Liq. 96–97, 425 (2002). https://doi.org/10.1016/S0167-7322(01)00364-6

    Article  Google Scholar 

  92. V. A. Isaeva and V. A. Sharnin, Russ. J. Phys. Chem. A 96, 710 (2022). https://doi.org/10.1134/S0036024422040112

    Article  CAS  Google Scholar 

  93. E. N. Tsurco and Yu. S. Kuchtenko, J. Mol. Liq. 189, 95 (2014). https://doi.org/10.1016/j.molliq.2013.03.023

    Article  CAS  Google Scholar 

  94. G. A. El-Naggar, M. El-Batouti, and A. A. Zaghloul, Portugal. Electrochim. Acta 18, 71 (2000). https://doi.org/10.4152/pea.200002071

    Article  CAS  Google Scholar 

  95. E. A. Trupikov, V. A. Shormanov, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 16, 573 (1973).

    CAS  Google Scholar 

  96. L. V. Kuritsyn and N. V. Kalinina, Russ. J. Phys. Chem. A 70, 347 (1996).

    Google Scholar 

  97. Zh. F. Gesse, G. I. Repkin, V. A. Isaeva, and V. A. Sharnin, J. Therm. Anal. Calorim. 110, 1457 (2012). https://doi.org/10.1007/s10973-011-2127-z

    Article  CAS  Google Scholar 

  98. F. Rodante, F. Rallo, and P. Fiordiponti, Thermochim. Acta 9, 269 (1974). https://doi.org/10.1016/0040-6031(74)80007-9

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under the government contract of the Ministry of Education and Science of Russia (project no. FZZW-2023-0008), with financial support from the Council for Grants under the President of the Russian Federation (project no. MK-923.2022.1.3) using the resources of the Multiaccess Center of Ivanovo State University of Chemical Technology with support from the Ministry of Education and Science of Russia (agreement no. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Grazhdan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, V.A., Gamov, G.A. & Grazhdan, K.V. Protolytic Equilibrium of Glycine and Glycylglycine: Structure of Ionic Forms and Solvent Effect on the Thermodynamic Parameters of Processes. Russ. J. Phys. Chem. 97, 2721–2730 (2023). https://doi.org/10.1134/S0036024423120142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120142

Keywords:

Navigation