Skip to main content
Log in

Computational Insights into the Structural, Electronic, Mechanical, Magnetic, and Thermodynamic Properties of New Half-Metallic Ferromagnetic Full-Heusler Alloys Cr2HfZ (Z = Ge, Sb, and Pb) Using FP-LAPW Method

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This study reports theoretical calculations of the structural, electronic, magnetic, elastic and thermodynamic properties of Cr2HfZ ternary alloys (Z = Ge, Sb, and Pb) through the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method based on The Wien2k program is reported in structure type L21 (type AlCu2Mnl).The exchange-correlation potential is evaluated using the generalized gradient approximation (GGA) within the Perdew–Burke–Ernzerhof (PBE) parameterization. The calculated lattice constants for Cr2HfGe, Cr2HfSb, and Cr2HfPb are 6.1953, 6.1949, and 6.5100 Å, respectively. The electronic structures show that both compounds have Half-metallic properties by showing 100% spin polarization near the Fermi level. The mechanical stability reveals that, all our compounds are stable mechanically. The Young’s modulus, Poisson’s ratio, zener anisotropy factor and density were calculated and discussed in detail. The total magnetic moment of 4.00μB is mainly contributed by the Cr atom. Furthermore, the thermodynamic properties, such as the heat capacity \({{{\text{C}}}_{{\text{V}}}}\), the thermal expansion coefficient \({{\alpha }}\), bulk modulus \({{\beta }}\) and the Debye temperature \({{{{\theta }}}_{{\text{D}}}}\), are computed by using the quasi-harmonic Debye model within the same pressure range at a series of temperature from 0 to 1400 K. Our obtained results for these quantities make these compounds attractive candidates for materials used in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006). https://doi.org/10.1088/0022-3727/39/5/S01

    Article  CAS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science (Washington, DC, U. S.) 287, 1019 (2000). https://doi.org/10.1126/science.287.5455.1019

    Article  CAS  Google Scholar 

  3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science (Washington, DC, U. S.) 294, 1488 (2001). https://doi.org/10.1126/science.1065389

    Article  CAS  Google Scholar 

  4. G. A. Prinz, Science (Washington, DC, U. S.) 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  CAS  Google Scholar 

  5. J. H. Park, E. Voscovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesh, Nature (London, U.K.) 392, 794 (1998). https://doi.org/10.1007/s11664-019-07482-2

    Article  CAS  Google Scholar 

  6. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  CAS  Google Scholar 

  7. G. Y. Gao, L. Hu, K. L. Yao, B. Luo, and N. Liu, J. Alloys Compd. 551, 539 (2013). https://doi.org/10.1016/j.jallcom.2012.11.077

    Article  CAS  Google Scholar 

  8. Y. Han, Y. Wu, T. Li, R. Khenata, T. Yang, and X. Wang, Materials 11, 797 (2018). https://doi.org/10.1021/jp909021r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. M. K. Hussain, G. Y. Gao, and K. L. Yao, J. Supercond. Novel Magn. 28, 3285 (2015). https://doi.org/10.1007/s11664-018-6512-2

    Article  CAS  Google Scholar 

  10. N. Shutoh and S. Sakurada, J. Alloys Compd. 389, 204 (2005). https://doi.org/10.1016/j.jallcom.2004.05.078

    Article  CAS  Google Scholar 

  11. C. S. Lue and Y.-K. Kuo, Phys. Rev. B 66, 085121 (2002). https://doi.org/10.1103/PhysRevB.66.085121

  12. R. Jain, N. Lakshmi, V. Jain, V. Jain, A. R. Chandra, and K. Venugopalan, J. Magn. Magn. Mater. 448, 278 (2018). https://doi.org/10.1016/j.jmmm.2017.06.074

    Article  CAS  Google Scholar 

  13. D. P. Rai, S. A. Shankar, A. E. Aly, P. K. Patra, and R. K. Thapa, J. Phys.: Conf. Ser. 765, 012005 (2016). https://doi.org/10.1088/1742-6596/765/1/012005

  14. K. Özdogan, I. Galanakis, E. Sasıoglu, and B. Aktas, J. Phys.: Condens. Matter 18, 2905 (2006). https://doi.org/10.1088/0953-8984/18/10/013

    Article  CAS  Google Scholar 

  15. X. Dai, G. Liu, G. H. Fecher, C. Felser, Y. Li, and H. Liu, J. Appl. Phys. 105, 07E901 (2009). https://doi.org/10.1063/1.3062812

  16. I. Asfour, H. Rached, S. Benalia, and D. Rached, J. Alloys Compd. 676, 440 (2016). https://doi.org/10.1016/j.jallcom.2016.03.075

    Article  CAS  Google Scholar 

  17. I. Asfour, H. Rached, D. Rached, M. Caid, and M. Labair, J. Alloys Compd. 742, 736 (2018). https://doi.org/10.1016/j.jallcom.2018.01.377

    Article  CAS  Google Scholar 

  18. A. Chakrabarti, J. Bhattacharya, R. Dutt, and D. Pandey, J. Magn. Magn. Mater. 490, 165521 (2019). https://doi.org/10.1016/j.jmmm.2019.165521

  19. A. Chakrabarti, S. W. D’Souza, and S. R. Barman, Phys. B (Amsterdam, Neth.) 407, 3547 (2012). https://doi.org/10.1016/j.physb.2012.05.021

  20. M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, and K. Schwarz, Comput. Phys. Commun. 126, 294 (2000).

    Article  CAS  Google Scholar 

  21. P. Blaha, K. Schwarz, G. Madsen, et al., User’s Guide, WIEN2k 12.1 (Vienna Univ. of Technol., Vienna, 2012).

    Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  23. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  24. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996). https://doi.org/10.1103/PhysRevB.54.16533

    Article  CAS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  PubMed  CAS  Google Scholar 

  26. F. D. Murnaghen, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  Google Scholar 

  27. I. Asfour, J. Supercond. Nov. Magn. 33, 2837 (2020). https://doi.org/10.1007/s10948-020-05519-w

    Article  CAS  Google Scholar 

  28. M. J. Mehl, Phys. Rev. B 47, 249 (1993). https://doi.org/10.1103/PhysRevB.47.2493

    Article  Google Scholar 

  29. R. Hill, Proc. Phys. Soc., Sect. A 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  30. F. Chu, Y. He, D. J. Thome, and T. E. Mitchell, Scr. Metall. Mater. 33, 1295 (1995).

    Article  CAS  Google Scholar 

  31. S. F. Pugh, Philos. Mag. J. Sci. 45, 823 (1954). https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  32. J. C. Slater, J. Phys. Chem. 41, 3199 (1964). https://doi.org/10.1063/1.1725697

    Article  CAS  Google Scholar 

  33. R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science (Washington, DC, U. S.) 282, 85 (1998). https://doi.org/10.1126/science.282.5386.85

    Article  CAS  Google Scholar 

  34. H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D 40, 1507 (2007). https://doi.org/10.1088/0022-3727/40/6/S01

    Article  CAS  Google Scholar 

  35. M. Florez, J. M. Recio, E. Francisco, M. A. Blanco, and A. Martin Pendas, Phys. Rev. B 66, 144112 (2002). https://doi.org/10.1103/PhysRevB.66.144112

  36. M. A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004). https://doi.org/10.1016/j.comphy.2003.12.001

    Article  CAS  Google Scholar 

  37. A. Kokalj, Comput. Mater. Sci. 28, 155 (2003). https://doi.org/10.1016/S0927-0256(03)00104-6

    Article  CAS  Google Scholar 

  38. F. Dahmane, C. Zouaneb, A. Abdiche, H. Meradji, R. Khenata, R. Ahmed, A. Bouhemadou, S. Bin Omran, Sikander Azam, and S. H. Naqib, Comput. Condens. Matter 26, e00518 (2021). https://doi.org/10.1016/j.cocom.2020.e00518

  39. B. E. Iyorzor and M. I. Babalola, J. Nig. Soc. Phys. Sci. 3, 138 (2022). https://doi.org/10.46481/jnsps.2021.297

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Asfour.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfour, I. Computational Insights into the Structural, Electronic, Mechanical, Magnetic, and Thermodynamic Properties of New Half-Metallic Ferromagnetic Full-Heusler Alloys Cr2HfZ (Z = Ge, Sb, and Pb) Using FP-LAPW Method. Russ. J. Phys. Chem. 97, 2731–2748 (2023). https://doi.org/10.1134/S0036024423120026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120026

Keywords:

Navigation