Skip to main content
Log in

Terminology and Mechanisms of Self-Emulsifying Systems for Biomedical Applications: A Comprehensive Review

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Self-emulsifying systems, such as self-emulsifying drug delivery systems (SEDDS) and self-nanoemulsifying drug delivery systems (SNEDDS), particularly used for enhancing the bioavailability of hydrophobic drugs. This review comprehensively examines the terminologies and mechanisms involved in self-emulsifying systems. The complex nature of self-emulsification is elucidated, encompassing diffusion, interfacial phenomena, and thermodynamic considerations. Three main mechanisms are explored in this review: diffusion and stranding, negative free energy for nanoemulsion formation, and the liquid crystalline (LC) phases formation at the interface. Diffusion and stranding cause rapid diffusion of water-miscible components, forming fine emulsion droplets. However, it lacks a clear thermodynamic explanation. Concept of negative free energy provides a thermodynamic explanation, while the formation of LC phases at the interface is an intermediary event during diffusion-driven self-emulsification. Understanding these mechanisms is crucial for developing optimum self-emulsifying formulation for pharmaceutical delivery, food bioactive delivery, and cosmetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Rehman, F.U., Shah, K.U., Shah, S.U., Khan, I.U., Khan, G.M., and Khan, A., From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS), Expert Opin. Drug Delivery, 2016, vol. 14, no. 11, pp. 1325–1340. https://doi.org/10.1080/17425247.2016.1218462

    Article  CAS  Google Scholar 

  2. Tang, B., Cheng, G., Gu, J.C., and Xu, C.H., Development of solid self-emulsifying drug delivery systems: Preparation techniques and dosage forms, Drug Discovery Today, 2008, vol. 13, nos. 13–14, pp. 606–612. https://doi.org/10.1016/j.drudis.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  3. Chatterjee, B., Almurisi, S.H., Dukhan, A.A., Mandal, U.K., and Sengupta, P., Controversies with self-emulsifying drug delivery system from a pharmacokinetic point of view, Drug Delivery, 2016, vol. 23, no. 9, pp. 3639–3652. https://doi.org/10.1080/10717544.2016.1214990

    Article  CAS  PubMed  Google Scholar 

  4. Dokania, S., and Joshi, A.K., Self-microemulsifying drug delivery system (SMEDDS)—Challenges and the road ahead, Drug Delivery, 2015, vol. 22, no. 6, pp. 675–690. https://doi.org/10.3109/10717544.2014.896058

    Article  CAS  PubMed  Google Scholar 

  5. Date, A.A., Desai, N., Dixit, R., and Nagarsenker, M., Self-nanoemulsifying drug delivery systems: Formulation insights, applications, and advances, Nanomedicine, 2010, vol. 5, no. 10, pp. 1595–1616. https://doi.org/10.2217/nnm.10.126

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, T., Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for the Oral Delivery of Lipophilic Drugs, Theses and Dissertations, University of Trento, 2015.

    Google Scholar 

  7. Lindenberga, M., Koppb, S., and Dressman, J.B., Classification of orally administered drugs on the World Health Organization Model list of essential medicines according to the biopharmaceutics classification system, Eur. J. Pharm. Biopharm., 2004, vol. 58, no. 2, pp. 265–278. https://doi.org/10.1016/j.ejpb.2004.03.001

    Article  Google Scholar 

  8. Kalepun, S., Manthina, M., and Padavala, V., Oral lipid-based drug delivery systems—an overview, Acta Pharm. Sin. B, 2013, vol. 3, no. 6, pp. 361–372. https://doi.org/10.1016/j.apsb.2013.10.001

    Article  Google Scholar 

  9. Savjani, K.T., Gajjar, A.K., and Savjani, J.K., Drug solubility: Importance and enhancement techniques, ISRN Pharm., 2012, vol. 2012, pp. 1–10. https://doi.org/10.5402/2012/195727

    Article  CAS  Google Scholar 

  10. Gaba, B., Fazil, M., Ali, A., Baboota, S., Sahni, J.K., and Ali, J., Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration, Drug Delivery, 2015, vol. 22, no. 6, pp. 691–700. https://doi.org/10.3109/10717544.2014.898110

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J., Mosquera-Giraldo, L.I., Ormes, J.D., Higgins, J.D., and Taylor, L.S., Bile salts as crystallization inhibitors of supersaturated solutions of poorly water-soluble compounds, Cryst. Growth Des., 2015, vol. 15, no. 6, pp. 2593–2597. https://doi.org/10.1021/acs.cgd.5b00392

    Article  CAS  Google Scholar 

  12. Kyaw, O.M., Mandal, U.K., and Chatterjee, B., Polymeric behavior evaluation of PVP K30-poloxamer binary carrier for solid dispersed nisoldipine by experimental design, Pharm. Dev. Technol., 2015, vol. 22, no. 1, pp. 2–12. https://doi.org/10.3109/10837450.2015.1116568

    Article  CAS  Google Scholar 

  13. Gidwani, B. and Vyas, A., A comprehensive review on cyclodextrin-based carriers for the delivery of chemotherapeutic cytotoxic anticancer drugs, BioMed Res. Int., 2015, vol. 2015, pp. 1–15. https://doi.org/10.1155/2015/198268

    Article  CAS  Google Scholar 

  14. Aungst, B.J., Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or pre-systemic metabolism, J. Pharm. Sci., 1993, vol. 82, no. 10, pp. 979–987. https://doi.org/10.1002/jps.2600821008

    Article  CAS  PubMed  Google Scholar 

  15. Mohsin, K., Alamri, R., Ahmad, A., Raish, M., Alanazi, F.K., and Hussain, M.D., Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug, Int. J. Nanomed., 2016, vol. 11, pp. 2829–2838. https://doi.org/10.2147/IJN.S104187

    Article  CAS  Google Scholar 

  16. Mohsin, K., Long, M.A., and Pouton, C.W., Design of lipid-based formulations for oral administration of poorly water-soluble drugs: Precipitation of the drug after the dispersion of formulations in an aqueous solution, J. Pharm. Sci., 2009, vol. 98, no. 10, pp. 3582–3595. https://doi.org/10.1002/jps.21659

    Article  CAS  PubMed  Google Scholar 

  17. Gursoy, R.N. and Benita, S., Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs, Biomed. Pharmacother., 2004, vol. 58, no. 3, pp. 173–182. https://doi.org/10.1016/j.biopha.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  18. Araya, H., Tomita, M., and Hayashi, M., The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water-soluble compounds, Int. J. Pharm., 2005, vol. 305, nos. 1–2, pp. 61–74. https://doi.org/10.1016/j.ijpharm.2005.08.022

    Article  CAS  PubMed  Google Scholar 

  19. Shah, N.H., Carvajal, M.T., Patel, C.I., Infeld, N.H., and Malick, A.W., Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs, Int. J. Pharm., 1994, vol. 106, no. 1, pp. 15–23. https://doi.org/10.1016/0378-5173(94)90271-2

    Article  CAS  Google Scholar 

  20. Gurram, A.K., Deshpande, P.B., Kar, S.S., Nayak, U.Y., Udupa, N., and Reddy, M.S., Role of components in the formation of self-microemulsifying drug delivery systems, Indian J. Pharm. Sci., 2015, vol. 77, no. 3, pp. 249–257. https://doi.org/10.4103/0250-474X.159596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah, N.H., Phuapradit, W., Zhang, Y.E., Ahmed, H., and Malick, A.W., Lipid-based isotropic solutions: Design considerations, In Oral Lipid-Based Formulations: Enhancing the Bioavailability of Poorly Water-Soluble Drugs, Hauss, D.J., Ed., New York: Informa Healthcare, 2007, pp. 129–148.

    Google Scholar 

  22. Pouton, C.W., Self-emulsifying drug delivery systems: Assessment of the efficiency of emulsification, Int. J. Pharm., 1985, vol. 27, nos. 2–3, pp. 335–348. https://doi.org/10.1016/0378-5173(85)90081-X

  23. Kolliparan, S. and Gandhi, R.K., Pharmacokinetic aspects and in vitro–in vivo correlation potential for lipid-based formulations, Acta Pharm. Sin. B, 2014, vol. 4, no. 5, pp. 333–349. https://doi.org/10.1016/j.apsb.2014.09.001

    Article  Google Scholar 

  24. Pouton, C.W., Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying, and ‘self-microemulsifying’ drug delivery systems, Eur. J. Pharm. Sci., 2000, vol. 11, pp. S93–S98. https://doi.org/10.1016/S0928-0987(00)00167-6

    Article  CAS  PubMed  Google Scholar 

  25. Pouton, C.W., Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system, Eur. J. Pharm. Sci., 2006, vol. 29, no. 34, pp. 278–287. https://doi.org/10.1016/j.ejps.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  26. Singh, A.K., Chaurasiya, A., Singh, M., Upadhyay, S.C., Mukherjee, R., and Khar, R.K., Exemestane loaded self-microemulsifying drug delivery system (SMEDDS): Development and optimization, AAPS PharmSciTech, 2008, vol. 9, pp. 628–634. https://doi.org/10.1208/s12249-008-9080-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, B., Bandopadhyay, S., Kapil, R., Singh, R., and Katare, O., Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications, Crit. Rev. Ther. Drug Carrier Syst., 2009, vol. 26, no. 5, pp. 427–521. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10

    Article  CAS  PubMed  Google Scholar 

  28. Cerpnjak, K., Zvonar, A., Gasperlin, M., and Vrecer, F., Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs, Acta Pharm., 2013, vol. 63, no. 4, pp. 427–445.

    Article  CAS  PubMed  Google Scholar 

  29. Pouton, C.W. and Porter, C.J.H., Formulation of lipid-based delivery systems for oral administration: Materials, methods, and strategies, Adv. Drug Delivery Rev., 2008, vol. 60, no. 6, pp. 625–637. https://doi.org/10.1016/j.addr.2007.10.010

    Article  CAS  Google Scholar 

  30. Kang, K.B., Lee, J.S., and Chon, S.K., Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs, Int. J. Pharm., 2004, vol. 274, nos. 1–2, pp. 65–73. https://doi.org/10.1016/j.ijpharm.2003.12.028

    Article  CAS  PubMed  Google Scholar 

  31. Cannon, J.B., Strategies to formulate lipid-based drug delivery systems, Am. Pharm. Rev., 2011, vol. 14, pp. 84–92.

    CAS  Google Scholar 

  32. Mason, T.G., Wilking, J.N., Meleson, K., Chang, C.B., and Graves, S.M., Nanoemulsions: Formation, structure, and physical properties, J. Phys.: Condens. Matter, 2006, vol. 18, no. 41, pp. 635–666. https://doi.org/10.1088/0953-8984/18/41/R01

    Article  CAS  Google Scholar 

  33. Agrawal, S., Giri, T.K., Tripathi, D.K., Ajazuddin, and Alexander, A., A review on novel therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid and surfactant-based self micro emulsifying drug delivery system: A novel approach, Am. J. Drug Discovery Dev., 2012, vol. 2, no. 4, pp. 143–183. https://doi.org/10.3923/ajdd.2012.143.183

    Article  CAS  Google Scholar 

  34. Yang, S., Gursoy, N., Lambert, G., and Benita, S., Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of P-glycoprotein inhibitors, Pharm. Res., 2004, vol. 21, pp. 261–270. https://doi.org/10.1023/B:PHAM.0000016238.44452.f1

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Z., Sun, J., Wang, Y., Liu, X., Liu, Y., Fu, Q., Meng, P., and He, Z., Solid self-emulsifying nitrendipine pellets: Preparation and in vitro/in vivo evaluation, Int. J. Pharm., 2010, vol. 383, nos. 1–2, pp. 1–6. https://doi.org/10.1016/j.ijpharm.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  36. Zidan, A.S., Sammour, O.A., Hammad, M.A., Megrab, N.A., Habib, M.J., and Khan, M.A., Quality by design: Understanding the product variability of a self-nanoemulsified drug delivery system of cyclosporine A, J. Pharm. Sci., 2007, vol. 96, no. 9, pp. 2409–2423. https://doi.org/10.1002/jps.20824

    Article  CAS  PubMed  Google Scholar 

  37. Fatouros, D.G., and Mullertz, A., Development of Self-Emulsifying Drug Delivery Systems (SEDDS) for oral bioavailability enhancement of poorly soluble drugs, in Drug Delivery Strategies for Poorly Water-Soluble Drugs, Douroumis, D. and Alfred Fahr, A., Eds., United Kingdom: John Wiley & Sons Ltd, 2013, 1st ed., pp. 224–245.

    Google Scholar 

  38. Land, L.M., Li, P., and Bummer, P.M., The influence of water content of triglyceride oils on the solubility of steroids, Pharm. Res., 2005, vol. 22, pp. 784–788. https://doi.org/10.1007/s11095-005-2595-6

    Article  CAS  PubMed  Google Scholar 

  39. Hauss, D.J., Oral lipid-based formulations, Adv. Drug Delivery Rev., 2007, vol. 59, no. 7, pp. 667–676. https://doi.org/10.1016/j.addr.2007.05.006

    Article  CAS  Google Scholar 

  40. Shah, I., Development and Characterization of Oil-in-Water Nanoemulsions from Self-Microemulsifying Mixtures, Theses and Dissertations, The University of Toledo, 2011.

    Google Scholar 

  41. Fernandez-Tarrio, M., Yanez, F., Immesoete, K., Alvarez-Lorenzo, C., and Concheiro, A., Pluronic and tetronic copolymers with polyglycolyzed oils as self-emulsifying drug delivery systems, AAPS PharmSciTech, 2008, vol. 9, pp. 471–479. https://doi.org/10.1208/s12249-008-9070-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bandyopadhyay, S., Katare, O.P., and Singh, B., Development of optimized supersaturable self-nanoemulsifying systems of ezetimibe: Effect of polymers and efflux transporters, Expert Opin. Drug Delivery, 2014, vol. 11, no. 4, pp. 479–492. https://doi.org/10.1517/17425247.2014.877885

    Article  CAS  Google Scholar 

  43. Humberstone, A.J. and Charman, W.N., Lipid-based vehicles for the oral delivery of poorly water-soluble drugs, Adv. Drug Delivery Rev., 1997, vol. 25, no. 1, pp. 103–128. https://doi.org/10.1016/S0169-409X(96)00494-2

    Article  CAS  Google Scholar 

  44. Parmar, N., Singla, N., Amina, S., and Kohli, K., Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self-nanoemulsifying drug delivery system, Colloids Surf. B, 2011, vol. 86, no. 2, pp. 327–338. https://doi.org/10.1016/j.colsurfb.2011.04.016

    Article  CAS  Google Scholar 

  45. Khan, A.W., Kotta, S., Ansari, S.H., Sharma, R.K., and Ali, J., Potentials and challenges in self-nanoemulsifying drug delivery systems, Expert Opin. Drug Delivery, 2012, vol. 9, no. 10, pp. 1305–1317. https://doi.org/10.1517/17425247.2012.719870

    Article  CAS  Google Scholar 

  46. Akhtar, N., Talegaonkar, S., Ahad, A., Khar, R.K., and Jaggi, M., Potential of a novel self-nanoemulsifying carrier system to overcome P-glycoprotein mediated efflux of etoposide: In vitro and ex vivo investigations, J. Drug Delivery Sci. Technol., 2015, vol. 28, pp. 18–27. https://doi.org/10.1016/j.jddst.2015.05.003

    Article  CAS  Google Scholar 

  47. Porter, H.J.C., Trevaskis, L.N., and Charman, W.N., Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs, Nat. Rev. Drug Discovery, 2007, vol. 6, no. 3, pp. 231–248. https://doi.org/10.1038/nrd2197

    Article  CAS  PubMed  Google Scholar 

  48. Mohsin, K., Shahba, A.A., and Alanazi, F.K., Lipid-based self-emulsifying formulations for poorly water-soluble drugs—an excellent opportunity, Indian J. Pharm. Educ. Res., 2012, vol. 46, no. 2, p. 88–96.

    Google Scholar 

  49. Suthar, V.C. and Butani, S.B., Preparation and evaluation of self-micro emulsifying drug delivery systems of Lercanidipine HCl using medium and short chain glycerides: A comparative study, Asian J. Pharm., 2016, vol. 10, no. 04, pp. 256–264. https://doi.org/10.22377/ajp.v10i04.864

    Article  CAS  Google Scholar 

  50. Mullertz, A., Ogbonna, A., Ren, S., and Rades, T., New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs, J. Pharm. Pharmacol., 2010. vol. 62, no. 11, pp. 1622–1636. https://doi.org/10.1111/j.2042-7158.2010.01107.x

    Article  CAS  PubMed  Google Scholar 

  51. Siqueira, S.D.V.S., Mullertz, A., Graeser, K., Kasten, G., Mu, H., and Rades, T., Influence of drug load and physical form of cinnarizine in new SNEDDS dosing regimens: In vivo and in vitro evaluations, AAPS J., 2017, vol. 19, pp. 587–594. https://doi.org/10.1208/s12248-016-0038-4

    Article  CAS  PubMed  Google Scholar 

  52. Cherniakov, I., Domb, A.J., and Hoffman, A., Self-nano-emulsifying drug delivery systems: An update of the biopharmaceutical aspects, Expert Opin. Drug Delivery, 2015. vol. 12, no. 7, pp. 1121–1133. https://doi.org/10.1517/17425247.2015.999038

    Article  CAS  Google Scholar 

  53. Kohli, K., Chopra, S., Dhar, D., Arora, S., and Khar, R.K., Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability, Drug Discovery Today, 2010, vol. 15, nos. 21–22, pp. 958–965. https://doi.org/10.1016/j.drudis.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  54. Wadhwa, J., Nair, A., and Kumria, R., Emulsion forming drug delivery system for lipophilic drugs, Acta Pol. Pharm., 2012, vol. 69, no. 2, pp. 179–191.

    CAS  PubMed  Google Scholar 

  55. Wang, L., Dong, J., Chen, J., Eastoe, J., and Li, X., Design and optimization of a new self-nanoemulsifying drug delivery system, J. Colloid Interface Sci., 2009, vol. 330, no. 2, pp. 443–448. https://doi.org/10.1016/j.jcis.2008.10.077

    Article  CAS  PubMed  Google Scholar 

  56. Nazari-Vanani, R., Azarpira, N., Heli, H., Karimian, K., and Sattarahmady, N., A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy, Colloids Surf. B, 2017, vol. 160, pp. 65–72. https://doi.org/10.1016/j.colsurfb.2017.09.008

    Article  CAS  Google Scholar 

  57. Patel, G., Shelat, P., and Lalwani, A., Statistical modeling, optimization, and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment, Drug Delivery, 2016, vol. 23, no. 8, pp. 3027–3042. https://doi.org/10.3109/10717544.2016.1141260

    Article  CAS  PubMed  Google Scholar 

  58. Jeevana, J.B. and Sreelakshmi, K., Design and evaluation of self-nanoemulsifying drug delivery system of flutamide, J. Young Pharm., 2011, vol. 3, no. 1, pp. 4–8. https://doi.org/10.4103/0975-1483.76413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suryawanshi, M.R. and Kondawar, M.S., Formulation and evaluation of solid self-micro emulsifying drug delivery system for Clarithromycin, Pharm. Sin., 2014, vol. 5, no. 5, pp. 27–35.

    Google Scholar 

  60. Thakkar, H., Nangesh, J., Parmar, M., and Patel, D., Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system, J. Pharm. BioAllied Sci., 2011, vol. 3, no. 3, pp. 442–448. https://doi.org/10.4103/0975-7406.84463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patel, A.R. and Vavia, P.R., Preparation and in vivo evaluation of SMEDDS (Self-microemulsifying drug delivery system) containing fenofibrate, AAPS J., 2007, vol. 9, pp. E344–E352. https://doi.org/10.1208/aapsj0903041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schulman, J.H. and Montagne, J.B., Formation of microemulsions by amino alkyl alcohols, Ann. N.Y. Acad. Sci., 1961, vol. 92, no. 2, pp. 366–371. https://doi.org/10.1111/j.1749-6632.1961.tb44987.x

    Article  CAS  PubMed  Google Scholar 

  63. McClements, D.J., Nanoemulsions versus microemulsions: Terminology, differences, and similarities, Soft Matter, 2012, vol. 8, no. 6, pp. 1719–1729. https://doi.org/10.1039/C2SM06903B

    Article  CAS  Google Scholar 

  64. Anton, N. and Vandamme, T.F., Nano-emulsions and micro-emulsions: Clarifications of the critical differences, Pharm. Res., 2011, vol. 28, pp. 978–985. https://doi.org/10.1007/s11095-010-0309-1

    Article  CAS  PubMed  Google Scholar 

  65. Nazzal, S., Smalyukh, I.I., Lavrentovich, O.D., and Khan, M.A., Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: Mechanism and progress of emulsion formation, Int. J. Pharm., 2002, vol. 235, nos. 1–2, pp. 247–265. https://doi.org/10.1016/S0378-5173(02)00003-0

    Article  CAS  PubMed  Google Scholar 

  66. Taha, E.I., Al-Saidan, S., Samy, A.M., and Khan, M.A., Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate, Int. J. Pharm., 2004, vol. 285, nos. 1–2, pp. 109–119. https://doi.org/10.1016/j.ijpharm.2004.03.034

    Article  CAS  PubMed  Google Scholar 

  67. Gaikwad, N.M., Shaikh, K.S., and Chaudhari, P.D., Development and evaluation of a system for colonic delivery of budesonide, Indian J. Pharm. Educ. Res., 2017, vol. 51, no. 4, pp. 551–561. https://doi.org/10.5530/ijper.51.4.84

    Article  CAS  Google Scholar 

  68. Groves, M.J., Sponteneous emulsification, Chem. Ind., 1978, vol. 12, pp. 417–423.

    Google Scholar 

  69. Montilla, J.C.L., Morales, P.E.H., Pandey, S., and Shah, D.O., Spontaneous emulsification: Mechanisms, physicochemical aspects, modeling, and applications, J. Dispersion Sci. Technol., 2002, vol. 23, nos. 1–2, pp. 219–268. https://doi.org/10.1080/01932690208984202

    Article  Google Scholar 

  70. Rang, M.J. and Miller, C.A., Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol, J. Colloid Interface Sci., 1999, vol. 209, no. 1, pp. 179–192. https://doi.org/10.1006/jcis.1998.5865

    Article  CAS  PubMed  Google Scholar 

  71. Bouchemal, K., Briancon, S., Perrier, E., and Fessi, H., Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimization, Int. J. Pharm, 2004, vol. 280, nos. 1–2, pp. 241–251. https://doi.org/10.1016/j.ijpharm.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  72. Solans, C., Morales, D., and Homs, M., Spontaneous emulsification, Curr. Opin. Colloid Interface Sci., 2016, vol. 22, pp. 88–93. https://doi.org/10.1016/j.cocis.2016.03.002

    Article  CAS  Google Scholar 

  73. Solans, C., and Sole, I., Nano-emulsions: Formation by low-energy methods, Curr. Opin. Colloid Interface Sci., 2012, vol. 17, no. 5, pp. 246–254. https://doi.org/10.1016/j.cocis.2012.07.003

    Article  CAS  Google Scholar 

  74. Montilla, J.C.L., Morales, P.E.H., and Shah, D.O., New method to quantitatively determine the spontaneity of the emulsification process, Langmuir, 2002, vol. 18, no. 11, pp. 4258–4262. https://doi.org/10.1021/la011832t

    Article  CAS  Google Scholar 

  75. Tcholakova, S., Valkova, Z., Cholakova, D., Vinarov, Z., Lesov, I., Denkov, N., et al., Efficient self-emulsification via cooling-heating cycles, Nat. Commun., 2017, vol. 8, no. 1, p. 15012. https://doi.org/10.1038/ncomms15012

    Article  PubMed  PubMed Central  Google Scholar 

  76. Anton, N. and Vandamme, T.F., The universality of low-energy nano-emulsification, Int. J. Pharm., 2009, vol. 377, nos. 1–2, pp. 142–147. https://doi.org/10.1016/j.ijpharm.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  77. Shahidzadeh, N., Bonn, D., and Meunier, J., Dynamics of spontaneous emulsification for fabrication of oil in water emulsions, Langmuir, 2000, vol. 16, no. 25, pp. 9703–9708. https://doi.org/10.1021/la000493l

    Article  CAS  Google Scholar 

  78. Miller, C.A., Spontaneous emulsification produced by diffusion - A review, Colloids Surf., 1988, vol. 29, no. 1, pp. 89–102. https://doi.org/10.1016/0166-6622(88)80173-2

    Article  CAS  Google Scholar 

  79. Ruschak, K.J. and Miller, C.A., Spontaneous emulsification in ternary systems with mass transfer, Ind. Eng. Chem. Fundam., 1972, vol. 11, no. 4, pp. 534–540. https://doi.org/10.1021/i160044a017

    Article  CAS  Google Scholar 

  80. Miller, C.A., Spontaneous emulsification: Recent developments with emphasis on self-emulsification, Surfactant Sci. Ser., 2006, vol. 132, pp. 107–126.

    CAS  Google Scholar 

  81. Bozeya, A., Al-Bawab, A., Friberg, S.E., and Miller, C.A., Spontaneous emulsification and phase equilibria in the system water, ethanol, and benzene, J. Dispersion Sci. Technol., 2013, vol. 34, no. 10, pp. 1429–1436. https://doi.org/10.1080/01932691.2012.743363

    Article  CAS  Google Scholar 

  82. Goncalves, A., Nikmaram, N., Roohinejad, S., Estevinho, B.N., Rocha, F., Greiner, R., et al., Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries, Colloids Surf., A., 2018, vol. 538, pp. 108–126. https://doi.org/10.1016/j.colsurfa.2017.10.076

    Article  CAS  Google Scholar 

  83. Sole, I., Solans, C., Maestro, A., Gonzalez, C., and Gutierrez, J.M., Study of nano-emulsion formation by dilution of microemulsions, J. Colloid Interface Sci., 2012, vol. 376, no. 1, pp. 133–139. https://doi.org/10.1016/j.jcis.2012.02.063

    Article  CAS  PubMed  Google Scholar 

  84. Lawrence, M.J. and Rees, G.D., Microemulsion-based media as novel drug delivery systems, Adv. Drug Delivery Rev., 2000, vol. 45, no. 1, pp. 89–121. https://doi.org/10.1016/S0169-409X(00)00103-4

    Article  CAS  Google Scholar 

  85. Rahman, M.A., Hussain, A., Hussain, M.S., Mirza, M.A., and Iqbal, Z., Role of excipients in successful development of self-emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS), Drug Dev. Ind. Pharm., 2013, vol. 39, no. 1, pp. 1–19. https://doi.org/10.3109/03639045.2012.660949

    Article  CAS  PubMed  Google Scholar 

  86. Reiss, H., Entropy-induced dispersion of bulk liquids, J. Colloid Interface Sci., 1975, vol. 53, no. 1, pp. 61–70. https://doi.org/10.1016/0021-9797(75)90035-1

    Article  Google Scholar 

  87. Weerapol, Y., Limmatvapirat, S., Kumpugdee-Vollrath, M., and Sriamornsak, P., Spontaneous emulsification of nifedipine-loaded self-nanoemulsifying drug delivery system, AAPS PharmSciTech, 2015, vol. 16, pp. 435–443. https://doi.org/10.1208/s12249-014-0238-0

    Article  CAS  PubMed  Google Scholar 

  88. Rang, M.J. and Miller, C.A., Spontaneous emulsification of oil drops containing surfactants and medium-chain alcohols, Prog. Colloid Polym. Sci., 1998, vol. 109, pp. 101–117. https://doi.org/10.1007/BFb0118162

    Article  CAS  Google Scholar 

  89. Davies, J.T. and Rideal, E.K., Interfacial Phenomena, New York: Academic Press Inc., 2nd ed., 1963.

    Google Scholar 

  90. Gopal, R.E.S., Principles of emulsion formation, in Emulsion Science, Sherman, P., Ed., London: Academic Press, 1968, pp. 1–75.

    Google Scholar 

  91. Miller, C.A., Hwan, R.N., Benton, W.J., and Fort, T.J., Ultralow interfacial tensions and their relation to phase separation in micellar solutions, J. Colloid Interface Sci., 1977, vol. 61, no. 3, pp. 554–568. https://doi.org/10.1016/0021-9797(77)90473-8

    Article  CAS  Google Scholar 

  92. Davies, J.T. and Rideal, E.K., Difussion through Interfaces, in Interfacial Phenomena, Willmer, H., Ed., New York: Academic Press, 1st ed., 1961, pp. 301–342. https://doi.org/10.1016/B978-0-12-395609-5.50011-7

  93. Davies, J.T. and Haydon, D.A., Spontaneous Emulsification, Proc. Int. Congr. Surf. Act 2nd, 1957, vol. 2, pp. 417–425.

  94. Ruckenstein, E. and Krishnan, R., Effect of electrolytes and mixtures of surfactants on the oil–water interfacial tension and their role in formation of microemulsions, J. Colloid Interface Sci., 1980, vol. 76, no. 1, pp. 201–211. https://doi.org/10.1016/0021-9797(80)90286-6

    Article  CAS  Google Scholar 

  95. Wakerly, M.G., Pouton, C.W., Meakin, B.J., and Morton, F.S., Self-emulsification of vegetable oil-non-ionic surfactant mixtures, ACS Symp. Ser., 1986, vol. 311, pp. 242–255. https://doi.org/10.1021/bk-1986-0311.ch018

    Article  CAS  Google Scholar 

  96. Groves, M.J. and Galindez, D.A., The self-emulsifying action of mixed surfactants in oil, Acta Pharm. Suec., 1976, vol. 13, no. 4, pp. 361–372.

    CAS  PubMed  Google Scholar 

  97. Komaiko, J.S. and McClements, D.J., Formation of food-grade nanoemulsions using low-energy preparation methods: A review of available methods, Compr. Rev. Food Sci. Food Saf., 2016, vol. 15, no. 2, pp. 331–352. https://doi.org/10.1111/1541-4337.12189

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Manish Kumar: conceptualization, investigation, writing original draft. C.P. Jain: supervision, validation, review and editing. Ajay Kumar Shukla: proofreading, editing, Garima Verma: proofreading, editing, Vimal Kumar Yadav: proofreading, editing.

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manish Kumar, Jain, C.P., Shukla, A.K. et al. Terminology and Mechanisms of Self-Emulsifying Systems for Biomedical Applications: A Comprehensive Review. Colloid J 85, 917–929 (2023). https://doi.org/10.1134/S1061933X23600719

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600719

Keywords:

Navigation