Skip to main content
Log in

Effect of Aging and Modification on the Interfacial Interaction in Asphalt Mastics

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In the temperature range –10–30°С the influence of thermo-oxidative aging, frequency and deformation on the interfacial interaction according to the parameters K–B–G* and К–В–δ in asphalt mastics and modified mastics based on bitumen grade BND 60/90 has been investigated. The filler was introduced into bitumen in the ratio of 1/1 by weight. Active powder of discretely devulcanized rubber (APDDR) as a modifier was introduced in the ratio bitumen/APDDR = 87.5/12.5 by weight. It is shown that the modification of APDDR provides a greater thickness of adsorbed layer on the surface of filler particles under various conditions of external influences compared to mastic, and this thickness depends on the sequence of introduction of filler and APDDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Davis, C. and Castorena, C., Implications of physico-chemical interactions in asphalt mastics on asphalt microstructure, Constr. Build. Mater., 2015, vol. 94, pp. 83–89. https://doi.org/10.1016/j.conbuildmat.2015.06.026

    Article  CAS  Google Scholar 

  2. Wu, W., Jiang, W., Yuan, D., Lu, R., Shan, J., Xiao, J., and Ogbon, A.W., A review of asphalt-filler interaction: Mechanisms, evaluation methods, and influencing factors, Constr. Build. Mater., 2021, vol. 299, p. 124279. https://doi.org/10.1016/j.conbuildmat.2021.124279

    Article  CAS  Google Scholar 

  3. Li, F., Yang, Y., and Wang, L., Evaluation of physicochemical interaction between asphalt binder and mineral filler through interfacial adsorbed film thickness, Constr. Build. Mater., 2020, vol. 252, p. 119135. https://doi.org/10.1016/j.conbuildmat.2020.119135

    Article  CAS  Google Scholar 

  4. Rahim, A., Milad, A., Yusoff, N.I., Airey, G., and Thom N., Stiffening effect of fillers based on rheology and micromechanics models, Appl. Sci., 2021, vol. 11, no. 14, p. 6521. https://doi.org/10.3390/app11146521

    Article  CAS  Google Scholar 

  5. Kim, M. and Buttlar, W.G., Stiffening mechanisms of asphalt–aggregate mixtures: From binder to mixture, Transp. Res. Rec., 2010, vol. 2181, no. 1, pp. 98–108. https://doi.org/10.3141/2181-11

    Article  Google Scholar 

  6. Clopotel, C., Velasquez, R., and Bahia H., Measuring physico-chemical interaction in mastics using glass transition, Road Mater. Pavement Des., 2012, vol. 13, no. supp. 1, pp. 304–320. https://doi.org/10.1080/14680629.2012.657095

  7. Underwood, B.S., Experimental investigation into the multiscale behaviour of asphalt concrete, Int. J. Pavement Eng., 2011, vol. 12, no. 4, pp. 357–370. https://doi.org/10.1080/10298436.2011.574136

    Article  Google Scholar 

  8. Cardone, F., Frigio, F., Ferrotti, G., and Canestrar, F., Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics, Journal of Traffic and Transportation Engineering (English Edition), 2015, vol. 2, no. 6, pp. 373–381. https://doi.org/10.1016/j.jtte.2015.06.003

    Article  Google Scholar 

  9. Dong, Z., Liu, Z., Wang, P., and Zhou, T., Modeling asphalt mastic modulus considering substrate–mastic interaction and adhesion, Constr. Build. Mater., 2018, vol. 166, pp. 324–333. https://doi.org/10.1016/j.conbuildmat.2018.01.140

    Article  Google Scholar 

  10. Guo, M., Bhasin, A., and Tan, Y., Effect of mineral fillers adsorption on rheological and chemical properties of asphalt binder, Constr. Build. Mater., 2017, vol. 141, pp. 152–159. https://doi.org/10.1016/j.conbuildmat.2017.02.051

    Article  CAS  Google Scholar 

  11. Alfaqawi, R.M., Airey, G.D., Presti, D.Lo, and Grenfell, J., Effects of mineral fillers on bitumen mastic chemistry and rheology, in Transport Infrastructure and Systems, Proc. AIIT Int. Congr. on Transport Infrastructure and Systems (Tis 2017), Rome, Italy, April 10–12, 2017, 2017, pp. 359–364. https://doi.org/10.1201/9781315281896-48

  12. Moraes, R. and Bahia, H.U., Effect of mineral filler on changes in molecular size distribution of asphalts during oxidative ageing, Road Mater. Pavement Des., 2015, vol. 16, no. S2, pp. 55–72. https://doi.org/10.1080/14680629.2015.1076998

  13. Tan, Y. and Guo, M., Interfacial thickness and interaction between asphalt and mineral fillers, Mater. Struct., 2014, vol. 47, pp. 605–614. https://doi.org/10.1617/s11527-013-0083-8

    Article  CAS  Google Scholar 

  14. Diab, A. and You, Z., Linear and nonlinear rheological properties of bituminous mastics under large amplitude oscillatory shear testing, J. Mater. Civ. Eng., 2018, vol. 30, no. 3, p. 04017303. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002179

    Article  Google Scholar 

  15. Guo, M., Tan, Y.Q., Yu, J., Hou, Y., and Wang, L., A direct characterization of interfacial interaction between asphalt binder and mineral fillers by atomic force microscopy, Mater. Struct., 2017, vol. 50, p. 141. https://doi.org/10.1617/s11527-017-1015-9

    Article  CAS  Google Scholar 

  16. Xu, W., Qiu, X., Xiao, S., Hong, H., Wang, F., and Yuan, J., Characteristics and mechanisms of asphalt–filler interactions from a multi-scale perspective, Materials, 2020, vol. 13, no. 12. p. 2744. https://doi.org/10.3390/ma13122744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palierne, J.F., Linear rheology of viscoelastic emulsions with interfacial-tension, Rheol. Acta, 1990, vol. 29, no. 3, pp. 204–214. https://doi.org/10.1007/BF01331356

    Article  CAS  Google Scholar 

  18. Ziegel, K.D. and Romanov, A., Modulus reinforcement in elastomer composites. I. Inorganic fillers, J. Appl. Polym. Sci., 1973, vol. 17, no. 4, pp. 1119–1131. https://doi.org/10.1002/app.1973.070170410

    Article  CAS  Google Scholar 

  19. Ibarra, L. and Panos, D., Dynamic properties of thermoplastic butadiene-styrene (SBS) and oxidized short carbon fiber composite materials, J. Appl. Polym. Sci., 1998, vol. 67, no. 10, pp. 1819–1826. https://doi.org/10.1002/(SICI)10974628(19980307) 67:10<1819::AID-APP15>3.0.CO;2-R

    Article  CAS  Google Scholar 

  20. Liu, G., Zhao, Y., Zhou, J., Li, J., Yang, T., and Zhan, J., Applicability of evaluation indices for asphalt and filler interaction ability, Constr. Build. Mater., 2017, vol. 148, pp. 599–609. https://doi.org/10.1016/j.conbuildmat.2017.05.089

    Article  CAS  Google Scholar 

  21. Guo, M., Tan, Y., Hou, Y., Wang, L., and Wang, Y., Improvement of evaluation indicator of interfacial interaction between asphalt binder and mineral fillers, Constr. Build. Mater., 2017, vol. 151, pp. 236–245. https://doi.org/10.1016/j.conbuildmat.2017.05.003

    Article  Google Scholar 

  22. Guo, M. and Tan, Y., Interaction between asphalt and mineral fillers and its correlation to mastics’ viscoelasticity, Int. J. Pavement Eng., 2021, vol. 22, no. 1, pp. 1–10. https://doi.org/10.1080/10298436.2019.1575379

    Article  CAS  Google Scholar 

  23. Frigio, F., Ferrotti, G., and Cardone F., Fatigue rheological characterization of polymer-modified bitumens and mastics, in 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, 2016, vol. 11, pp. 655–666. https://doi.org/10.1007/978-94-017-7342-3_53

  24. Mazzoni, G., Virgili, A., and Canestrari F., Influence of different fillers and SBS modified bituminous blends on fatigue, self-healing and thixotropic performance of mastics, Road Mater. Pavement Des., 2019, vol. 20, no. 3, pp. 656–670. https://doi.org/10.1080/14680629.2017.1417150

    Article  CAS  Google Scholar 

  25. Li, F. and Yang, Y., Understanding the temperature and loading frequency effects on physicochemical interaction ability between mineral filler and asphalt binder using molecular dynamic simulation and rheological experiments, Constr. Build. Mater., 2020, vol. 244, p. 118311. https://doi.org/10.1016/j.conbuildmat.2020.118311

    Article  CAS  Google Scholar 

  26. Chen, M., Javilla, B., Hong, W., Pan, C., Riara, M., Mo, L., and Guo, M., Rheological and interaction analysis of asphalt binder, mastic and mortar, Materials, 2019, vol. 12, p. 128. https://doi.org/10.3390/ma12010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nikol’skii, V., Dudareva, T., Krasotkina, I., Gordeeva, I., Vetcher, A.A., and Botin, A., Ultra-dispersed powders produced by high-temperature shear-induced grinding of worn-out tire and products of their interaction with hot bitumen, Polymers, 2022, vol. 14, no. 17, p. 3627. https://doi.org/10.3390/polym14173627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikol’skii, V., Dudareva, T., Krasotkina, I., Gordeeva, I., Gorbativa, V., Vetcher, A.A., and Botin, A., Mechanism of multi-stage degradation in hot bitumen of micronized Elastomeric Powder Modifiers from worn-out tire’s rubber, Polymers, 2022, vol. 14, no. 19, p. 4112. https://doi.org/10.3390/polym14194112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nikolskii, V.G., Krasotkina, I.A., Dudareva, T.V., Gorelysheva, L.A., and Garmanov, V.N., The influence of aging and modification on the relaxation properties of petroleum road bitumen and asphalt binder, Klei. Germetiki. Tehnologii, 2022, no. 10, pp. 31–39. https://doi.org/10.31044/1813-7008-2022-0-10-31-39

  30. GOST (State Standard) 22245-90, Viscous Petroleum Road Bitumens, 1991.

    Google Scholar 

  31. Metodika izmerenii gruppovogo himicheskogo sostava tyazhelykh nefteproduktov metodom zhidkostno-adsorbtsionnoi hromatografii s gradientnym vytesneniem (Methodology for Measuring the Chemical Composition of Heavy Petroleum Products Using Liquid Adsorption Chromatography with Gradient Displacement), Ufa, 2014.

  32. GOST (State Standard) R 52129−2003, Mineral Powders for Asphaltic Concrete and Organomineral Mixtures, 2003.

    Google Scholar 

  33. Gordeeva, I.V., Dudareva, T.V., Krasotkina, I.A., Nikol’skii, V.G., Naumova Yu.A., Sinkevich M.Yu., and Lobachev V.A., Methodological aspects of evaluating the particle size distribution of powder elastomeric materials, Key Eng. Mater., 2021, vol. 899, pp. 58−66. https://doi.org/10.4028/www.scientific.net/KEM.899.58

    Article  Google Scholar 

  34. Berlin, A.A., Nikolskiy, V.G., Krasotkina, I.A., Dudareva, T.V., Gorbarova V.N., Gordeeva I.V., Sorokin A.V., Lobachev V.A., Dubina S.I., and Sinkevich M.Yu., Rubber and rubber-polymer modifiers of asphalt concrete mixtures produced by method of high-temperature shear grinding. Part 3. Evaluation of modification efficiency, Polym. Sci. Ser. D, 2022, vol. 15, no. 1, pp. 71–78. https://doi.org/10.1134/S199542122201004X

    Article  CAS  Google Scholar 

  35. AASHTO T 240-13 Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test), 2017.

  36. Laukkanen, O.V., Soenen, H., Winter, H.H., and Seppälä, J., Low-temperature rheological and morphological characterization of SBS modified bitumen, Constr. Build. Mater., 2018, vol. 179, pp. 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160

    Article  CAS  Google Scholar 

  37. Gorbatova, V.N., Gordeeva, I.V., Dudareva, T.V., Krasotkina, I.A., Nikol’skii V.G., and Egorov, V.M., Effect of the active powder of discretely devulcanized rubber on bitumen properties at low temperatures, Nanotechnol. Constr., 2023, vol. 15, no. 1, pp. 72–83. https://doi.org/10.15828/2075-8545-2023-15-1-72-83

    Article  CAS  Google Scholar 

  38. Ma, X., Chen, H., Gui, C., Xing, M., Yang, P., et al. Influence of the properties of an asphalt binder on the rheological performance of mastic, Constr. Build. Mater., 2019, vol. 227, p. 116659. https://doi.org/10.1016/j.conbuildmat.2019.08.040

    Article  CAS  Google Scholar 

  39. Mturi, G., O’Connell, J., Zoorob, S.E., and De Beer M., A study of crumb rubber modified bitumen used in South Africa, Road Mater. Pavement Des., 2014, vol. 15, no. 4, pp. 774–790. https://doi.org/10.1080/14680629.2014.910130

    Article  CAS  Google Scholar 

Download references

Funding

This work was executed within the framework of the State Prize of the Ministry of Education and Science of the Russian Federation (Semenov Federal Research Center for Chemical Physics RAS, Theme no. 122040400099-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Dudareva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudareva, T.V., Krasotkina, I.A., Gordeeva, I.V. et al. Effect of Aging and Modification on the Interfacial Interaction in Asphalt Mastics. Colloid J 85, 889–897 (2023). https://doi.org/10.1134/S1061933X23600811

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600811

Keywords:

Navigation