Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

In Vitro Blood-Brain Barrier Models for Neuroinfectious Diseases: A Narrative Review

Author(s): Ahmad Hussein Badawi, Nur Afiqah Mohamad, Johnson Stanslas, Brian Patrick Kirby, Vasantha Kumari Neela, Rajesh Ramasamy and Hamidon Basri*

Volume 22, Issue 8, 2024

Published on: 08 December, 2023

Page: [1344 - 1373] Pages: 30

DOI: 10.2174/1570159X22666231207114346

Price: $65

Abstract

The blood-brain barrier (BBB) is a complex, dynamic, and adaptable barrier between the peripheral blood system and the central nervous system. While this barrier protects the brain and spinal cord from inflammation and infection, it prevents most drugs from reaching the brain tissue. With the expanding interest in the pathophysiology of BBB, the development of in vitro BBB models has dramatically evolved. However, due to the lack of a standard model, a range of experimental protocols, BBB-phenotype markers, and permeability flux markers was utilized to construct in vitro BBB models. Several neuroinfectious diseases are associated with BBB dysfunction. To conduct neuroinfectious disease research effectively, there stems a need to design representative in vitro human BBB models that mimic the BBB's functional and molecular properties. The highest necessity is for an in vitro standardised BBB model that accurately represents all the complexities of an intact brain barrier. Thus, this in-depth review aims to describe the optimization and validation parameters for building BBB models and to discuss previous research on neuroinfectious diseases that have utilized in vitro BBB models. The findings in this review may serve as a basis for more efficient optimisation, validation, and maintenance of a structurally- and functionally intact BBB model, particularly for future studies on neuroinfectious diseases.

Keywords: Blood-brain barrier (BBB) model, standardization of BBB model, optimization parameters, validation parameters, neuroinfectious diseases, peripheral blood system, central nervous system.

Graphical Abstract
[1]
Abbott, N.J. Future perspectives. In: Blood-brain barrier in drug discovery: optimizing brain exposure of cns drugs and minimizing brain side effects for peripheral drugs; Di, L.; Kerns, E.H., Eds.; Wiley, 2015; pp. 1-586.
[http://dx.doi.org/10.1002/9781118788523.ch26]
[2]
Burkhart, A.; Thomsen, L.B.; Thomsen, M.S.; Lichota, J.; Fazakas, C.; Krizbai, I.; Moos, T. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties. Fluids Barriers CNS, 2015, 12(1), 19.
[http://dx.doi.org/10.1186/s12987-015-0015-9] [PMID: 26246240]
[3]
Kim, K.S. Pathogenesis of bacterial meningitis: From bacteraemia to neuronal injury. Nat. Rev. Neurosci., 2003, 4(5), 376-385.
[http://dx.doi.org/10.1038/nrn1103] [PMID: 12728265]
[4]
Kim, K.S. Mechanisms of microbial traversal of the blood-brain barrier. Nat. Rev. Microbiol., 2008, 6(8), 625-634.
[http://dx.doi.org/10.1038/nrmicro1952] [PMID: 18604221]
[5]
Candelario-Jalil, E.; Yang, Y.; Rosenberg, G.A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 2009, 158(3), 983-994.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.025] [PMID: 18621108]
[6]
Verma, S.; Kumar, M.; Gurjav, U.; Lum, S.; Nerurkar, V.R. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology, 2010, 397(1), 130-138.
[http://dx.doi.org/10.1016/j.virol.2009.10.036] [PMID: 19922973]
[7]
Roberts, T.K.; Buckner, C.M.; Berman, J.W. Leukocyte transmigration across the blood-brain barrier: Perspectives on neuroAIDS. Front. Biosci., 2010, 15(1), 478-536.
[http://dx.doi.org/10.2741/3631] [PMID: 20036831]
[8]
Greenwood, J.; Heasman, S.J.; Alvarez, J.I.; Prat, A.; Lyck, R.; Engelhardt, B. Review: Leucocyte-endothelial cell crosstalk at the blood-brain barrier: A prerequisite for successful immune cell entry to the brain. Neuropathol. Appl. Neurobiol., 2011, 37(1), 24-39.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01140.x] [PMID: 20946472]
[9]
Winger, R.C.; Koblinski, J.E.; Kanda, T.; Ransohoff, R.M.; Muller, W.A. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier. J. Immunol., 2014, 193(5), 2427-2437.
[http://dx.doi.org/10.4049/jimmunol.1400700] [PMID: 25063869]
[10]
Varatharajan, L.; Thomas, S.A. The transport of anti-HIV drugs across blood-CNS interfaces: Summary of current knowledge and recommendations for further research. Antiviral Res., 2009, 82(2), A99-A109.
[http://dx.doi.org/10.1016/j.antiviral.2008.12.013] [PMID: 19176219]
[11]
Deli, M.A.; Ábrahám, C.S.; Kataoka, Y.; Niwa, M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol., 2005, 25(1), 59-127.
[http://dx.doi.org/10.1007/s10571-004-1377-8] [PMID: 15962509]
[12]
Patabendige, A. The value of in vitro models of the blood-brain barrier and their uses. Altern. Lab. Anim., 2012, 40(6), 335-338.
[http://dx.doi.org/10.1177/026119291204000606] [PMID: 23398338]
[13]
Patabendige, A.; Michael, B.D.; Craig, A.G.; Solomon, T. Brain microvascular endothelial-astrocyte cell responses following Japanese encephalitis virus infection in an in vitro human blood-brain barrier model. Mol. Cell. Neurosci., 2018, 89, 60-70.
[http://dx.doi.org/10.1016/j.mcn.2018.04.002] [PMID: 29635016]
[14]
Abbott, N.J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat., 2002, 200(6), 629-638.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00064.x] [PMID: 12162730]
[15]
Sims, D.E. Diversity within pericytes. Clin. Exp. Pharmacol. Physiol., 2000, 27(10), 842-846.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03343.x] [PMID: 11022980]
[16]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[17]
Dohgu, S.; Takata, F.; Yamauchi, A.; Nakagawa, S.; Egawa, T.; Naito, M.; Tsuruo, T.; Sawada, Y.; Niwa, M.; Kataoka, Y. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-β production. Brain Res., 2005, 1038(2), 208-215.
[http://dx.doi.org/10.1016/j.brainres.2005.01.027] [PMID: 15757636]
[18]
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185.
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[19]
Chaudhuri, J.D. Blood brain barrier and infection. Med. Sci. Monit., 2000, 6(6), 1213-1222.
[PMID: 11208482]
[20]
de Boer, A.G.; Gaillard, P.J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 323-355.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105237] [PMID: 16961459]
[21]
Harhaj, N.S.; Antonetti, D.A. Regulation of tight junctions and loss of barrier function in pathophysiology. Int. J. Biochem. Cell Biol., 2004, 36(7), 1206-1237.
[http://dx.doi.org/10.1016/j.biocel.2003.08.007] [PMID: 15109567]
[22]
Kniesel, U.; Wolburg, H. Tight junctions of the blood-brain barrier. Cell. Mol. Neurobiol., 2000, 20(1), 57-76.
[http://dx.doi.org/10.1023/A:1006995910836] [PMID: 10690502]
[23]
Schulze, C.; Firth, J.A. Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J. Cell Sci., 1993, 104(3), 773-782.
[http://dx.doi.org/10.1242/jcs.104.3.773] [PMID: 8314872]
[24]
Vorbrodt, A.W.; Dobrogowska, D.H. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels. Folia Histochem. Cytobiol., 2004, 42(2), 67-75.
[PMID: 15253128]
[25]
Wolburg, H.; Lippoldt, A. Tight junctions of the blood-brain barrier. Vascul. Pharmacol., 2002, 38(6), 323-337.
[http://dx.doi.org/10.1016/S1537-1891(02)00200-8] [PMID: 12529927]
[26]
Bagley, R.G.; Weber, W.; Rouleau, C.; Teicher, B.A. Pericytes and endothelial precursor cells: Cellular interactions and contributions to malignancy. Cancer Res., 2005, 65(21), 9741-9750.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4337] [PMID: 16266995]
[27]
Dore-Duffy, P. Pericytes: Pluripotent cells of the blood brain barrier. Curr. Pharm. Des., 2008, 14(16), 1581-1593.
[http://dx.doi.org/10.2174/138161208784705469] [PMID: 18673199]
[28]
Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[29]
Hori, S.; Ohtsuki, S.; Hosoya, K.; Nakashima, E.; Terasaki, T. A pericyte‐derived angiopoietin‐1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie‐2 activation in vitro. J. Neurochem., 2004, 89(2), 503-513.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02343.x] [PMID: 15056293]
[30]
Levéen, P.; Pekny, M.; Gebre-Medhin, S.; Swolin, B.; Larsson, E.; Betsholtz, C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev., 1994, 8(16), 1875-1887.
[http://dx.doi.org/10.1101/gad.8.16.1875] [PMID: 7958863]
[31]
Lindahl, P.; Johansson, B.R.; Levéen, P.; Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science (80-), 1997, 277(5323), 242-245.
[32]
Igarashi, Y.; Utsumi, H.; Chiba, H.; Yamada-Sasamori, Y.; Tobioka, H.; Kamimura, Y.; Furuuchi, K.; Kokai, Y.; Nakagawa, T.; Mori, M.; Sawada, N. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem. Biophys. Res. Commun., 1999, 261(1), 108-112.
[http://dx.doi.org/10.1006/bbrc.1999.0992] [PMID: 10405331]
[33]
Ifergan, I.; Kebir, H.; Terouz, S.; Alvarez, J.I.; Lécuyer, M.A.; Gendron, S.; Bourbonnière, L.; Dunay, I.R.; Bouthillier, A.; Moumdjian, R.; Fontana, A.; Haqqani, A.; Klopstein, A.; Prinz, M.; López-Vales, R.; Birchler, T.; Prat, A. Role of ninjurin‐1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann. Neurol., 2011, 70(5), 751-763.
[http://dx.doi.org/10.1002/ana.22519] [PMID: 22162058]
[34]
Alvarez, JI; Dodelet-Devillers, A; Kebir, H; Ifergan, I; Fabre, PJ; Terouz, S The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science (80-), 2011, 334(6063), 1727-1731.
[http://dx.doi.org/10.1126/science.1206936]
[35]
Schlageter, K.E.; Molnar, P.; Lapin, G.D.; Groothuis, D.R. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc. Res., 1999, 58(3), 312-328.
[http://dx.doi.org/10.1006/mvre.1999.2188] [PMID: 10527772]
[36]
Hellström, M.; Gerhardt, H.; Kalén, M.; Li, X.; Eriksson, U.; Wolburg, H.; Betsholtz, C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol., 2001, 153(3), 543-554.
[http://dx.doi.org/10.1083/jcb.153.3.543] [PMID: 11331305]
[37]
Kacem, K.; Lacombe, P.; Seylaz, J.; Bonvento, G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: A confocal microscopy study. Glia, 1998, 23(1), 1-10.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199805)23:1<1:AID-GLIA1>3.0.CO;2-B] [PMID: 9562180]
[38]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[39]
Man, S.; Ubogu, E.E.; Ransohoff, R.M. Inflammatory cell migration into the central nervous system: A few new twists on an old tale. Brain Pathol., 2007, 17(2), 243-250.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00067.x] [PMID: 17388955]
[40]
Tontsch, U.; Bauer, H.C. Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Res., 1991, 539(2), 247-253.
[http://dx.doi.org/10.1016/0006-8993(91)91628-E] [PMID: 1675906]
[41]
Savettieri, G.; Liegro, I.D.; Catania, C.; Licata, L.; Pitarresi, G.L. DʼAgostino, S.; Schiera, G.; De Caro, V.; Giandalia, G.; Giannola, L.I.; Cestelli, A. Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport, 2000, 11(5), 1081-1084.
[http://dx.doi.org/10.1097/00001756-200004070-00035] [PMID: 10790886]
[42]
Pulido, R.S.; Munji, R.N.; Chan, T.C.; Quirk, C.R.; Weiner, G.A.; Weger, B.D.; Rossi, M.J.; Elmsaouri, S.; Malfavon, M.; Deng, A.; Profaci, C.P.; Blanchette, M.; Qian, T.; Foreman, K.L.; Shusta, E.V.; Gorman, M.R.; Gachon, F.; Leutgeb, S.; Daneman, R. Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron, 2020, 108(5), 937-952.e7.
[http://dx.doi.org/10.1016/j.neuron.2020.09.002] [PMID: 32979312]
[43]
Rhea, E.M.; Banks, W.A. Role of the blood-brain barrier in central nervous system insulin resistance. Front. Neurosci., 2019, 13, 521.
[http://dx.doi.org/10.3389/fnins.2019.00521] [PMID: 31213970]
[44]
Fabriek, B.O.; Van Haastert, E.S.; Galea, I.; Polfliet, M.M.J.; Döpp, E.D.; Van Den Heuvel, M.M.; Van Den Berg, T.K.; De Groot, C.J.A.; Van Der Valk, P.; Dijkstra, C.D. CD163‐positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia, 2005, 51(4), 297-305.
[http://dx.doi.org/10.1002/glia.20208] [PMID: 15846794]
[45]
Haruwaka, K.; Ikegami, A.; Tachibana, Y.; Ohno, N.; Konishi, H.; Hashimoto, A.; Matsumoto, M.; Kato, D.; Ono, R.; Kiyama, H.; Moorhouse, A.J.; Nabekura, J.; Wake, H. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun., 2019, 10(1), 5816.
[http://dx.doi.org/10.1038/s41467-019-13812-z] [PMID: 31862977]
[46]
Joost, E.; Jordão, M.J.C.; Mages, B.; Prinz, M.; Bechmann, I.; Krueger, M. Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Struct. Funct., 2019, 224(3), 1301-1314.
[http://dx.doi.org/10.1007/s00429-019-01834-8] [PMID: 30706162]
[47]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[48]
Stewart, P.A.; Wiley, M.J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: A study using quail-chick transplantation chimeras. Dev. Biol., 1981, 84(1), 183-192.
[http://dx.doi.org/10.1016/0012-1606(81)90382-1] [PMID: 7250491]
[49]
Kadl, A.; Leitinger, N. The role of endothelial cells in the resolution of acute inflammation. Antioxid. Redox Signal., 2005, 7(11-12), 1744-1754.
[http://dx.doi.org/10.1089/ars.2005.7.1744] [PMID: 16356135]
[50]
Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood-brain barrier in drug discovery and development. Nat. Rev. Drug Discov., 2007, 6(8), 650-661.
[http://dx.doi.org/10.1038/nrd2368] [PMID: 17667956]
[51]
Emmi, A.; Wenzel, H.J.; Schwartzkroin, P.A.; Taglialatela, M.; Castaldo, P.; Bianchi, L.; Nerbonne, J.; Robertson, G.A.; Janigro, D. Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes. J. Neurosci., 2000, 20(10), 3915-3925.
[http://dx.doi.org/10.1523/JNEUROSCI.20-10-03915.2000] [PMID: 10804231]
[52]
Sá-Pereira, I.; Brites, D.; Brito, M.A. Neurovascular unit: A focus on pericytes. Mol. Neurobiol., 2012, 45(2), 327-347.
[http://dx.doi.org/10.1007/s12035-012-8244-2] [PMID: 22371274]
[53]
Dore-duffy, P.; Cleary, K. Morphology and properties of pericytes. In: The Blood-Brain and Other Neural Barriers Methods in Molecular Biology (Methods and Protocols); Nag, S., Ed.; Humana Press, 2011.
[http://dx.doi.org/10.1007/978-1-60761-938-3_2]
[54]
Armulik, A.; Genové, G.; Betsholtz, C. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell, 2011, 21(2), 193-215.
[http://dx.doi.org/10.1016/j.devcel.2011.07.001] [PMID: 21839917]
[55]
Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci., 2016, 19(6), 771-783.
[http://dx.doi.org/10.1038/nn.4288] [PMID: 27227366]
[56]
Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood-brain barrier. Nature, 2010, 468(7323), 557-561.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[57]
Ben-Zvi, A.; Lacoste, B.; Kur, E.; Andreone, B.J.; Mayshar, Y.; Yan, H.; Gu, C. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature, 2014, 509(7501), 507-511.
[http://dx.doi.org/10.1038/nature13324] [PMID: 24828040]
[58]
Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 2010, 468(7323), 562-566.
[http://dx.doi.org/10.1038/nature09513] [PMID: 20944625]
[59]
Gerhardt, H.; Wolburg, H.; Redies, C. N‐cadherin mediates pericytic‐endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn., 2000, 218(3), 472-479.
[http://dx.doi.org/10.1002/1097-0177(200007)218:3<472:AID-DVDY1008>3.0.CO;2-#] [PMID: 10878612]
[60]
Allt, G.; Lawrenson, J.G. Pericytes: Cell biology and pathology. Cells Tissues Organs, 2001, 169(1), 1-11.
[http://dx.doi.org/10.1159/000047855] [PMID: 11340256]
[61]
Aguilera, K.Y.; Brekken, R.A. Recruitment and retention: Factors that affect pericyte migration. Cell. Mol. Life Sci., 2014, 71(2), 299-309.
[http://dx.doi.org/10.1007/s00018-013-1432-z] [PMID: 23912898]
[62]
Bell, R.D.; Winkler, E.A.; Sagare, A.P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B.V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 2010, 68(3), 409-427.
[http://dx.doi.org/10.1016/j.neuron.2010.09.043] [PMID: 21040844]
[63]
Shepro, D.; Morel, N.M.L. Pericyte physiology. FASEB J., 1993, 7(11), 1031-1038.
[http://dx.doi.org/10.1096/fasebj.7.11.8370472] [PMID: 8370472]
[64]
Nakagawa, S.; Deli, M.A.; Kawaguchi, H.; Shimizudani, T.; Shimono, T.; Kittel, Á.; Tanaka, K.; Niwa, M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int., 2009, 54(3-4), 253-263.
[http://dx.doi.org/10.1016/j.neuint.2008.12.002] [PMID: 19111869]
[65]
Wang, S.; Cao, C.; Chen, Z.; Bankaitis, V.; Tzima, E.; Sheibani, N.; Burridge, K. Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One, 2012, 7(9), e45499.
[http://dx.doi.org/10.1371/journal.pone.0045499] [PMID: 23029055]
[66]
Nichols, N.R.; Day, J.R.; Laping, N.J.; Johnson, S.A.; Finch, C.E. GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging, 1993, 14(5), 421-429.
[http://dx.doi.org/10.1016/0197-4580(93)90100-P] [PMID: 8247224]
[67]
Oberheim, N.A.; Takano, T.; Han, X.; He, W.; Lin, J.H.C.; Wang, F.; Xu, Q.; Wyatt, J.D.; Pilcher, W.; Ojemann, J.G.; Ransom, B.R.; Goldman, S.A.; Nedergaard, M. Uniquely hominid features of adult human astrocytes. J. Neurosci., 2009, 29(10), 3276-3287.
[http://dx.doi.org/10.1523/JNEUROSCI.4707-08.2009] [PMID: 19279265]
[68]
Bazargani, N.; Attwell, D. Astrocyte calcium signaling: The third wave. Nat. Neurosci., 2016, 19(2), 182-189.
[http://dx.doi.org/10.1038/nn.4201] [PMID: 26814587]
[69]
Mathiisen, T.M.; Lehre, K.P.; Danbolt, N.C.; Ottersen, O.P. The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction. Glia, 2010, 58(9), 1094-1103.
[http://dx.doi.org/10.1002/glia.20990] [PMID: 20468051]
[70]
Gee, J.R.; Keller, J.N. Astrocytes: Regulation of brain homeostasis via apolipoprotein E. Int. J. Biochem. Cell Biol., 2005, 37(6), 1145-1150.
[http://dx.doi.org/10.1016/j.biocel.2004.10.004] [PMID: 15778078]
[71]
Friede, R. Quantitative share of the glia in development of the cortex. Acta Anat., 1954, 20(3), 290-296.
[http://dx.doi.org/10.1159/000140905] [PMID: 13137775]
[72]
Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.; Pakkenberg, B. Neocortical glial cell numbers in human brains. Neurobiol. Aging, 2008, 29(11), 1754-1762.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.013] [PMID: 17544173]
[73]
Herculano-Houzel, S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia, 2014, 62(9), 1377-1391.
[http://dx.doi.org/10.1002/glia.22683] [PMID: 24807023]
[74]
Nagy, J.I.; Patel, D.; Ochalski, P.A.Y.; Stelmack, G.L. Connexin30 in rodent, cat and human brain: Selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience, 1999, 88(2), 447-468.
[http://dx.doi.org/10.1016/S0306-4522(98)00191-2] [PMID: 10197766]
[75]
Gaillard, P.J.; Voorwinden, L.H.; Nielsen, J.L.; Ivanov, A.; Atsumi, R.; Engman, H.; Ringbom, C.; de Boer, A.G.; Breimer, D.D. Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci., 2001, 12(3), 215-222.
[http://dx.doi.org/10.1016/S0928-0987(00)00123-8] [PMID: 11113640]
[76]
Yung, W.K.; Luna, M.; Borit, A. Vimentin and glial fibrillary acidic protein in human brain tumors. J. Neurooncol., 1985, 3(1), 35-38.
[http://dx.doi.org/10.1007/BF00165169] [PMID: 3889231]
[77]
Sun, D.; Lytle, C.; O’Donnell, M.E. IL-6 secreted by astroglial cells regulates Na-K-Cl cotransport in brain microvessel endothelial cells. Am. J. Physiol. Cell Physiol., 1997, 272(6), C1829-C1835.
[http://dx.doi.org/10.1152/ajpcell.1997.272.6.C1829] [PMID: 9227411]
[78]
Sobue, K.; Yamamoto, N.; Yoneda, K.; Hodgson, M.E.; Yamashiro, K.; Tsuruoka, N.; Tsuda, T.; Katsuya, H.; Miura, Y.; Asai, K.; Kato, T. Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res., 1999, 35(2), 155-164.
[http://dx.doi.org/10.1016/S0168-0102(99)00079-6] [PMID: 10616919]
[79]
Tran, N.D.; Correale, J.; Schreiber, S.S.; Fisher, M. Transforming growth factor-β mediates astrocyte-specific regulation of brain endothelial anticoagulant factors. Stroke, 1999, 30(8), 1671-1678.
[http://dx.doi.org/10.1161/01.STR.30.8.1671] [PMID: 10436120]
[80]
Kim, K.K.; Adelstein, R.S.; Kawamoto, S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem., 2009, 284(45), 31052-31061.
[http://dx.doi.org/10.1074/jbc.M109.052969] [PMID: 19713214]
[81]
Katsetos, C.D.; Herman, M.M.; Mörk, S.J. Class III β‐tubulin in human development and cancer. Cell Motil. Cytoskeleton, 2003, 55(2), 77-96.
[http://dx.doi.org/10.1002/cm.10116] [PMID: 12740870]
[82]
Aihara, M.; Ishii, S.; Kume, K.; Shimizu, T. Interaction between neurone and microglia mediated by platelet‐activating factor. Genes Cells, 2000, 5(5), 397-406.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00333.x] [PMID: 10886367]
[83]
Tan, Y.L.; Yuan, Y.; Tian, L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry, 2020, 25(2), 351-367.
[http://dx.doi.org/10.1038/s41380-019-0609-8] [PMID: 31772305]
[84]
Biber, K.; Owens, T.; Boddeke, E. What is microglia neurotoxicity (Not)? Glia, 2014, 62(6), 841-854.
[http://dx.doi.org/10.1002/glia.22654] [PMID: 24590682]
[85]
Lai, A.Y.; Dhami, K.S.; Dibal, C.D.; Todd, K.G. Neonatal rat microglia derived from different brain regions have distinct activation responses. Neuron Glia Biol., 2011, 7(1), 5-16.
[http://dx.doi.org/10.1017/S1740925X12000154] [PMID: 22857737]
[86]
Katsumoto, A.; Lu, H.; Miranda, A.S.; Ransohoff, R.M. Ontogeny and functions of central nervous system macrophages. J. Immunol., 2014, 193(6), 2615-2621.
[http://dx.doi.org/10.4049/jimmunol.1400716] [PMID: 25193935]
[87]
Ajami, B.; Bennett, J.L.; Krieger, C.; Tetzlaff, W.; Rossi, F.M.V. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci., 2007, 10(12), 1538-1543.
[http://dx.doi.org/10.1038/nn2014] [PMID: 18026097]
[88]
Kierdorf, K.; Erny, D.; Goldmann, T.; Sander, V.; Schulz, C.; Perdiguero, E.G.; Wieghofer, P.; Heinrich, A.; Riemke, P.; Hölscher, C.; Müller, D.N.; Luckow, B.; Brocker, T.; Debowski, K.; Fritz, G.; Opdenakker, G.; Diefenbach, A.; Biber, K.; Heikenwalder, M.; Geissmann, F.; Rosenbauer, F.; Prinz, M. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci., 2013, 16(3), 273-280.
[http://dx.doi.org/10.1038/nn.3318] [PMID: 23334579]
[89]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[90]
Thurgur, H.; Pinteaux, E. Microglia in the neurovascular nnit: Blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience, 2019, 405, 55-67.
[http://dx.doi.org/10.1016/j.neuroscience.2018.06.046] [PMID: 31007172]
[91]
Grossmann, R.; Stence, N.; Carr, J.; Fuller, L.; Waite, M.; Dailey, M.E. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia, 2002, 37(3), 229-240.
[http://dx.doi.org/10.1002/glia.10031] [PMID: 11857681]
[92]
Kabba, J.A.; Xu, Y.; Christian, H.; Ruan, W.; Chenai, K.; Xiang, Y.; Zhang, L.; Saavedra, J.M.; Pang, T. Microglia: housekeeper of the central nervous system. Cell. Mol. Neurobiol., 2018, 38(1), 53-71.
[http://dx.doi.org/10.1007/s10571-017-0504-2] [PMID: 28534246]
[93]
Ito, D.; Imai, Y.; Ohsawa, K.; Nakajima, K.; Fukuuchi, Y.; Kohsaka, S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res., 1998, 57(1), 1-9.
[http://dx.doi.org/10.1016/S0169-328X(98)00040-0] [PMID: 9630473]
[94]
Carson, M.J.; Doose, J.M.; Melchior, B.; Schmid, C.D.; Ploix, C.C. CNS immune privilege: Hiding in plain sight. Immunol. Rev., 2006, 213(1), 48-65.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00441.x] [PMID: 16972896]
[95]
Engelhardt, B.; Carare, R.O.; Bechmann, I.; Flügel, A.; Laman, J.D.; Weller, R.O. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol., 2016, 132(3), 317-338.
[http://dx.doi.org/10.1007/s00401-016-1606-5] [PMID: 27522506]
[96]
Nishioku, T.; Matsumoto, J.; Dohgu, S.; Sumi, N.; Miyao, K.; Takata, F.; Shuto, H.; Yamauchi, A.; Kataoka, Y. Tumor necrosis factor-α mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J. Pharmacol. Sci., 2010, 112(2), 251-254.
[http://dx.doi.org/10.1254/jphs.09292SC] [PMID: 20118615]
[97]
Yang, Y.; Salayandia, V.M.; Thompson, J.F.; Yang, L.Y.; Estrada, E.Y.; Yang, Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J. Neuroinflammation, 2015, 12(1), 26.
[http://dx.doi.org/10.1186/s12974-015-0245-4] [PMID: 25889169]
[98]
Nakajima, K.; Tohyama, Y.; Maeda, S.; Kohsaka, S.; Kurihara, T. Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem. Int., 2007, 50(6), 807-820.
[http://dx.doi.org/10.1016/j.neuint.2007.02.006] [PMID: 17459525]
[99]
Abbott, N.J. Anatomy and physiology of the blood - brain barriers. In: Drug delivery to the brain AAPS Advances in the Pharmaceutical Sciences Series; Hammarlund-Udenaes, M.; de Lange, E.; Thorne, R., Eds.; Springer: New York, NY, 2014.
[http://dx.doi.org/10.1007/978-1-4614-9105-7_1]
[100]
Helms, H.C.; Abbott, N.J.; Burek, M.; Cecchelli, R.; Couraud, P.O.; Deli, M.A.; Förster, C.; Galla, H.J.; Romero, I.A.; Shusta, E.V.; Stebbins, M.J.; Vandenhaute, E.; Weksler, B.; Brodin, B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab., 2016, 36(5), 862-890.
[http://dx.doi.org/10.1177/0271678X16630991] [PMID: 26868179]
[101]
Annunziata, P.; Cioni, C.; Toneatto, S.; Paccagnini, E. HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS, 1998, 12(18), 2377-2385.
[http://dx.doi.org/10.1097/00002030-199818000-00006] [PMID: 9875575]
[102]
Chen, Y.; McCarron, R.M.; Azzam, N.; Bembry, J.; Reutzler, C.; Lenz, F.A.; Spatz, M. Endothelin-1 and nitric oxide affect human cerebromicrovascular endothelial responses and signal transduction. Acta Neurochir. Suppl., 2000, 76, 131-135.
[http://dx.doi.org/10.1007/978-3-7091-6346-7_27] [PMID: 11449992]
[103]
Št’astný, F.; Škultétyová, I.; Pliss, L.; Ježová, D. Quinolinic acid enhances permeability of rat brain microvessels to plasma albumin. Brain Res. Bull., 2000, 53(4), 415-420.
[http://dx.doi.org/10.1016/S0361-9230(00)00368-3] [PMID: 11136997]
[104]
Chapouly, C.; Tadesse Argaw, A.; Horng, S.; Castro, K.; Zhang, J.; Asp, L.; Loo, H.; Laitman, B.M.; Mariani, J.N.; Straus Farber, R.; Zaslavsky, E.; Nudelman, G.; Raine, C.S.; John, G.R. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain, 2015, 138(6), 1548-1567.
[http://dx.doi.org/10.1093/brain/awv077] [PMID: 25805644]
[105]
Yang, R.; Liu, W.; Miao, L.; Yang, X.; Fu, J.; Dou, B.; Cai, A.; Zong, X.; Tan, C.; Chen, H.; Wang, X. Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood-brain barrier. Oncotarget, 2016, 7(39), 63839-63855.
[http://dx.doi.org/10.18632/oncotarget.11696] [PMID: 27588479]
[106]
Argaw, A.T.; Gurfein, B.T.; Zhang, Y.; Zameer, A.; John, G.R. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc. Natl. Acad. Sci., 2009, 106(6), 1977-1982.
[http://dx.doi.org/10.1073/pnas.0808698106] [PMID: 19174516]
[107]
Argaw, A.T.; Asp, L.; Zhang, J.; Navrazhina, K.; Pham, T.; Mariani, J.N.; Mahase, S.; Dutta, D.J.; Seto, J.; Kramer, E.G.; Ferrara, N.; Sofroniew, M.V.; John, G.R. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest., 2012, 122(7), 2454-2468.
[http://dx.doi.org/10.1172/JCI60842] [PMID: 22653056]
[108]
Carmen-Orozco, R.P.; Dávila-Villacorta, D.G.; Cauna, Y.; Bernal-Teran, E.G.; Bitterfeld, L.; Sutherland, G.L.; Chile, N.; Céliz, R.H.; Ferrufino-Schmidt, M.C.; Gavídia, C.M.; Sterling, C.R.; García, H.H.; Gilman, R.H.; Verástegui, M.R. Blood-brain barrier disruption and angiogenesis in a rat model for neurocysticercosis. J. Neurosci. Res., 2019, 97(2), 137-148.
[http://dx.doi.org/10.1002/jnr.24335] [PMID: 30315659]
[109]
Corada, M.; Mariotti, M.; Thurston, G.; Smith, K.; Kunkel, R.; Brockhaus, M.; Lampugnani, M.G.; Martin-Padura, I.; Stoppacciaro, A.; Ruco, L.; McDonald, D.M.; Ward, P.A.; Dejana, E. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl. Acad. Sci., 1999, 96(17), 9815-9820.
[http://dx.doi.org/10.1073/pnas.96.17.9815] [PMID: 10449777]
[110]
Vestweber, D. VE-Cadherin. Arterioscler. Thromb. Vasc. Biol., 2008, 28(2), 223-232.
[http://dx.doi.org/10.1161/ATVBAHA.107.158014] [PMID: 18162609]
[111]
Coureuil, M.; Mikaty, G.; Miller, F.; Lécuyer, H.; Bernard, C.; Bourdoulous, S. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science, 2009, 325(5936), 83-87.
[http://dx.doi.org/10.1126/science.1173196]
[112]
Song, L.; Ge, S.; Pachter, J.S. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood, 2007, 109(4), 1515-1523.
[http://dx.doi.org/10.1182/blood-2006-07-034009] [PMID: 17023578]
[113]
Nusrat, A.; Parkos, C.A.; Verkade, P.; Foley, C.S.; Liang, T.W.; Innis-Whitehouse, W.; Eastburn, K.K.; Madara, J.L. Tight junctions are membrane microdomains. J. Cell Sci., 2000, 113(10), 1771-1781.
[http://dx.doi.org/10.1242/jcs.113.10.1771] [PMID: 10769208]
[114]
Alves, J.L. Blood-brain barrier and traumatic brain injury. J. Neurosci. Res., 2014, 92(2), 141-147.
[http://dx.doi.org/10.1002/jnr.23300] [PMID: 24327344]
[115]
Tuttolomondo, A.; Di Raimondo, D.; di Sciacca, R.; Pinto, A.; Licata, G. Inflammatory cytokines in acute ischemic stroke. Curr. Pharm. Des., 2008, 14(33), 3574-3589.
[http://dx.doi.org/10.2174/138161208786848739] [PMID: 19075734]
[116]
Song, L.; Pachter, J.S. Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc. Res., 2004, 67(1), 78-89.
[http://dx.doi.org/10.1016/j.mvr.2003.07.001] [PMID: 14709405]
[117]
Stamatovic, S.M.; Keep, R.F.; Kunkel, S.L.; Andjelkovic, A.V. Potential role of MCP-1 in endothelial cell tight junction ‘opening’: Signaling via Rho and Rho kinase. J. Cell Sci., 2003, 116(22), 4615-4628.
[http://dx.doi.org/10.1242/jcs.00755] [PMID: 14576355]
[118]
dos Santos, A.C.; Barsante, M.M.; Esteves Arantes, R.M.; Bernard, C.C.A.; Teixeira, M.M.; Carvalho-Tavares, J. CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis-an intravital microscopy study. J. Neuroimmunol., 2005, 162(1-2), 122-129.
[http://dx.doi.org/10.1016/j.jneuroim.2005.01.020] [PMID: 15833367]
[119]
Chui, R.; Dorovini-Zis, K. Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J. Neuroinflammation, 2010, 7(1), 1.
[http://dx.doi.org/10.1186/1742-2094-7-1] [PMID: 20047691]
[120]
Glabinski, A.R.; Balasingam, V.; Tani, M.; Kunkel, S.L.; Strieter, R.M.; Yong, V.W. Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J. Immunol., 1996, 156(11), 4363-4368.
[http://dx.doi.org/10.4049/jimmunol.156.11.4363]
[121]
Takeshita, Y.; Ransohoff, R.M. Inflammatory cell trafficking across the blood-brain barrier: Chemokine regulation and in vitro models. Immunol. Rev., 2012, 248(1), 228-239.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01127.x] [PMID: 22725965]
[122]
Sivandzade, F.; Cucullo, L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J. Cereb. Blood Flow Metab., 2018, 38(10), 1667-1681.
[http://dx.doi.org/10.1177/0271678X18788769] [PMID: 30058456]
[123]
Andjelkovic, A.V.; Stamatovic, S.M.; Phillips, C.M.; Martinez-Revollar, G.; Keep, R.F. Modeling blood-brain barrier pathology in cerebrovascular disease in vitro: Current and future paradigms. Fluids Barriers CNS, 2020, 17(1), 44.
[http://dx.doi.org/10.1186/s12987-020-00202-7] [PMID: 32677965]
[124]
Bhalerao, A.; Sivandzade, F.; Archie, S.R.; Chowdhury, E.A.; Noorani, B.; Cucullo, L. In vitro modeling of the neurovascular unit: Advances in the field. Fluids Barriers CNS, 2020, 17(1), 22.
[http://dx.doi.org/10.1186/s12987-020-00183-7] [PMID: 32178700]
[125]
Hajal, C.; Campisi, M.; Mattu, C.; Chiono, V.; Kamm, R.D. In vitro models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics, 2018, 12(4), 042213.
[http://dx.doi.org/10.1063/1.5027118] [PMID: 29887937]
[126]
Bagchi, S.; Chhibber, T.; Lahooti, B.; Verma, A.; Borse, V.; Jayant, R.D. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des. Devel. Ther., 2019, 13, 3591-3605.
[http://dx.doi.org/10.2147/DDDT.S218708] [PMID: 31695329]
[127]
Gastfriend, B.D.; Palecek, S.P.; Shusta, E.V. Modeling the blood-brain barrier: Beyond the endothelial cells. Curr. Opin. Biomed. Eng., 2018, 5, 6-12.
[http://dx.doi.org/10.1016/j.cobme.2017.11.002] [PMID: 29915815]
[128]
Herland, A.; van der Meer, A.D.; FitzGerald, E.A.; Park, T.E.; Sleeboom, J.J.F.; Ingber, D.E. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS One, 2016, 11(3), e0150360.
[http://dx.doi.org/10.1371/journal.pone.0150360] [PMID: 26930059]
[129]
Santaguida, S.; Janigro, D.; Hossain, M.; Oby, E.; Rapp, E.; Cucullo, L. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: A permeability study. Brain Res., 2006, 1109(1), 1-13.
[http://dx.doi.org/10.1016/j.brainres.2006.06.027] [PMID: 16857178]
[130]
Kaisar, M.A.; Sajja, R.K.; Prasad, S.; Abhyankar, V.V.; Liles, T.; Cucullo, L. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin. Drug Discov., 2017, 12(1), 89-103.
[http://dx.doi.org/10.1080/17460441.2017.1253676] [PMID: 27782770]
[131]
Jiang, L.; Li, S.; Zheng, J.; Li, Y.; Huang, H. Recent progress in microfluidic models of the blood-brain barrier. Micromachines, 2019, 10(6), 375.
[http://dx.doi.org/10.3390/mi10060375] [PMID: 31195652]
[132]
Naik, P.; Cucullo, L. In vitro blood-brain barrier models: Current and perspective technologies. J. Pharm. Sci., 2012, 101(4), 1337-1354.
[http://dx.doi.org/10.1002/jps.23022] [PMID: 22213383]
[133]
Roberts, L.M.; Black, D.S.; Raman, C.; Woodford, K.; Zhou, M.; Haggerty, J.E.; Yan, A.T.; Cwirla, S.E.; Grindstaff, K.K. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience, 2008, 155(2), 423-438.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.015] [PMID: 18619525]
[134]
Ghosh, C.; Gonzalez-Martinez, J.; Hossain, M.; Cucullo, L.; Fazio, V.; Janigro, D.; Marchi, N. Pattern of P450 expression at the human blood-brain barrier: Roles of epileptic condition and laminar flow. Epilepsia, 2010, 51(8), 1408-1417.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02428.x] [PMID: 20074231]
[135]
Ghosh, C.; Puvenna, V.; Gonzalez-Martinez, J.; Janigro, D.; Marchi, N. Blood-brain barrier P450 enzymes and multidrug transporters in drug resistance: A synergistic role in neurological diseases. Curr. Drug Metab., 2011, 12(8), 742-749.
[http://dx.doi.org/10.2174/138920011798357051] [PMID: 21568937]
[136]
Dauchy, S.; Dutheil, F.; Weaver, R.J.; Chassoux, F.; Daumas-Duport, C.; Couraud, P.O.; Scherrmann, J.M.; De Waziers, I.; Declèves, X. ABC transporters, cytochromes P450 and their main transcription factors: Expression at the human blood-brain barrier. J. Neurochem., 2008, 107(6), 1518-1528.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05720.x] [PMID: 19094056]
[137]
Abbott, N.J.; Romero, I.A. Transporting therapeutics across the blood-brain barrier. Mol. Med. Today, 1996, 2(3), 106-113.
[http://dx.doi.org/10.1016/1357-4310(96)88720-X] [PMID: 8796867]
[138]
Ghazanfari, F.A.; Stewart, R.R. Characteristics of endothelial cells derived from the blood-brain barrier and of astrocytes in culture. Brain Res., 2001, 890(1), 49-65.
[http://dx.doi.org/10.1016/S0006-8993(00)03053-5] [PMID: 11164768]
[139]
Kido, Y.; Tamai, I.; Nakanishi, T.; Kagami, T.; Hirosawa, I.; Sai, Y.; Tsuji, A. Evaluation of blood-brain barrier transporters by co-culture of brain capillary endothelial cells with astrocytes. Drug Metab. Pharmacokinet., 2002, 17(1), 34-41.
[http://dx.doi.org/10.2133/dmpk.17.34] [PMID: 15618650]
[140]
Lindroos, B.; Aho, K.L.; Kuokkanen, H.; Räty, S.; Huhtala, H.; Lemponen, R.; Yli-Harja, O.; Suuronen, R.; Miettinen, S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng. Part A, 2010, 16(7), 2281-2294.
[http://dx.doi.org/10.1089/ten.tea.2009.0621] [PMID: 20184435]
[141]
Jancic, C.; Chuluyan, H.E.; Morelli, A.; Larregina, A.; Kolkowski, E.; Saracco, M.; Barboza, M.; Leiva, W.S.; Fainboim, L. Interactions of dendritic cells with fibronectin and endothelial cells. Immunology, 1998, 95(2), 283-290.
[http://dx.doi.org/10.1046/j.1365-2567.1998.00586.x] [PMID: 9824488]
[142]
Syvänen, S.; Lindhe, Ö.; Palner, M.; Kornum, B.R.; Rahman, O.; Långström, B.; Knudsen, G.M.; Hammarlund-Udenaes, M. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab. Dispos., 2009, 37(3), 635-643.
[http://dx.doi.org/10.1124/dmd.108.024745] [PMID: 19047468]
[143]
Uchida, Y.; Ohtsuki, S.; Katsukura, Y.; Ikeda, C.; Suzuki, T.; Kamiie, J.; Terasaki, T. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem., 2011, 117(2), 333-345.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07208.x] [PMID: 21291474]
[144]
Warren, M.S.; Zerangue, N.; Woodford, K.; Roberts, L.M.; Tate, E.H.; Feng, B.; Li, C.; Feuerstein, T.J.; Gibbs, J.; Smith, B.; de Morais, S.M.; Dower, W.J.; Koller, K.J. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol. Res., 2009, 59(6), 404-413.
[http://dx.doi.org/10.1016/j.phrs.2009.02.007] [PMID: 19429473]
[145]
Löscher, W.; Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol., 2005, 76(1), 22-76.
[http://dx.doi.org/10.1016/j.pneurobio.2005.04.006] [PMID: 16011870]
[146]
Bernas, M.J.; Cardoso, F.L.; Daley, S.K.; Weinand, M.E.; Campos, A.R.; Ferreira, A.J.G.; Hoying, J.B.; Witte, M.H.; Brites, D.; Persidsky, Y.; Ramirez, S.H.; Brito, M.A. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat. Protoc., 2010, 5(7), 1265-1272.
[http://dx.doi.org/10.1038/nprot.2010.76] [PMID: 20595955]
[147]
Weksler, B.B.; Subileau, E.A.; Perrière, N.; Charneau, P.; Holloway, K.; Leveque, M.; Tricoire-Leignel, H.; Nicotra, A.; Bourdoulous, S.; Turowski, P.; Male, D.K.; Roux, F.; Greenwood, J.; Romero, I.A.; Couraud, P.O. Blood‐brain barrier‐specific properties of a human adult brain endothelial cell line. FASEB J., 2005, 19(13), 1872-1874.
[http://dx.doi.org/10.1096/fj.04-3458fje] [PMID: 16141364]
[148]
Marroni, M.; Kight, K.M.; Hossain, M.; Cucullo, L.; Desai, S.Y.; Janigro, D. Dynamic In vitro model of the blood-brain barrier: biology and research protocols; Humana Press: Totowa, NJ, 2003, pp. 419-434.
[http://dx.doi.org/10.1385/1-59259-419-0:419]
[149]
Deli, M.A. Blood-brain barrier models BT - Handbook of neurochemistry and molecular neurobiology: neural membranes and transport; Springer US: Boston, MA, 2007, pp. 29-55.
[http://dx.doi.org/10.1007/978-0-387-30380-2_2]
[150]
Helms, H.C.; Waagepetersen, H.S.; Nielsen, C.U.; Brodin, B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J., 2010, 12(4), 759-770.
[http://dx.doi.org/10.1208/s12248-010-9237-6] [PMID: 20967520]
[151]
Patabendige, A.; Skinner, R.A.; Abbott, N.J. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res., 2013, 1521, 1-15.
[http://dx.doi.org/10.1016/j.brainres.2012.06.057] [PMID: 22789905]
[152]
Idris, F.; Muharram, H.S.; Zaini, Z.; Diah, S. Establishment of murine in vitro blood-brain barrier models using immortalized cell lines: Co-cultures of brain endothelial cells, astrocytes, and neurons. bioRxiv, 2018, 435990.
[http://dx.doi.org/10.1101/435990]
[153]
Cucullo, L.; Hossain, M.; Rapp, E.; Manders, T.; Marchi, N.; Janigro, D. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia, 2007, 48(3), 505-516.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00960.x] [PMID: 17326793]
[154]
Ghosh, C.; Hossain, M.; Solanki, J.; Najm, I.M.; Marchi, N.; Janigro, D. Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia, 2017, 58(4), 576-585.
[http://dx.doi.org/10.1111/epi.13703] [PMID: 28199000]
[155]
Labus, J.; Häckel, S.; Lucka, L.; Danker, K. Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J. Neurosci. Methods, 2014, 228, 35-45.
[http://dx.doi.org/10.1016/j.jneumeth.2014.03.002] [PMID: 24631939]
[156]
Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement techniques for in vitro barrier model systems. SLAS Technol., 2015, 20(2), 107-126.
[http://dx.doi.org/10.1177/2211068214561025] [PMID: 25586998]
[157]
Crone, C.; Olesen, S.P. Electrical resistance of brain microvascular endothelium. Brain Res., 1982, 241(1), 49-55.
[http://dx.doi.org/10.1016/0006-8993(82)91227-6] [PMID: 6980688]
[158]
Butt, A.M.; Jones, H.C.; Abbott, N.J. Electrical resistance across the blood‐brain barrier in anaesthetized rats: A developmental study. J. Physiol., 1990, 429(1), 47-62.
[http://dx.doi.org/10.1113/jphysiol.1990.sp018243] [PMID: 2277354]
[159]
Crone, C.; Christensen, O. Electrical resistance of a capillary endothelium. J. Gen. Physiol., 1981, 77(4), 349-371.
[http://dx.doi.org/10.1085/jgp.77.4.349] [PMID: 7241087]
[160]
Eigenmann, D.E.; Xue, G.; Kim, K.S.; Moses, A.V.; Hamburger, M.; Oufir, M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS, 2013, 10(1), 33.
[http://dx.doi.org/10.1186/2045-8118-10-33] [PMID: 24262108]
[161]
Veszelka, S.; Tóth, A.; Walter, F.R.; Tóth, A.E.; Gróf, I.; Mészáros, M.; Bocsik, A.; Hellinger, É.; Vastag, M.; Rákhely, G.; Deli, M.A. Comparison of a rat primary cell-based blood-brain barrier model with epithelial and brain endothelial cell lines : Gene expression and drug transport. Front. Mol. Neurosci., 2018, 11, 166.
[http://dx.doi.org/10.3389/fnmol.2018.00166] [PMID: 29872378]
[162]
Maherally, Z.; Fillmore, H.L.; Tan, S.L.; Tan, S.F.; Jassam, S.A.; Quack, F.I.; Hatherell, K.E.; Pilkington, G.J. Real‐time acquisition of transendothelial electrical resistance in an all‐human, in vitro, 3‐dimensional, blood‐brain barrier model exemplifies tight‐junction integrity. FASEB J., 2018, 32(1), 168-182.
[http://dx.doi.org/10.1096/fj.201700162R] [PMID: 28883042]
[163]
Elbakary, B.; Badhan, R.K.S. A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation. Sci. Rep., 2020, 10(1), 3788.
[http://dx.doi.org/10.1038/s41598-020-60689-w] [PMID: 32123236]
[164]
Förster, C.; Burek, M.; Romero, I.A.; Weksler, B.; Couraud, P.O.; Drenckhahn, D. Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood-brain barrier. J. Physiol., 2008, 586(7), 1937-1949.
[http://dx.doi.org/10.1113/jphysiol.2007.146852] [PMID: 18258663]
[165]
Stone, N.L.; England, T.J.; O’Sullivan, S.E. A novel transwell blood brain barrier model using primary human cells. Front. Cell. Neurosci., 2019, 13, 230.
[http://dx.doi.org/10.3389/fncel.2019.00230] [PMID: 31244605]
[166]
Cucullo, L.; Marchi, N.; Hossain, M.; Janigro, D. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J. Cereb. Blood Flow Metab., 2011, 31(2), 767-777.
[http://dx.doi.org/10.1038/jcbfm.2010.162] [PMID: 20842162]
[167]
Prudhomme, J.G.; Sherman, I.W.; Land, K.M.; Moses, A.V.; Stenglein, S.; Nelson, J.A. Studies of Plasmodium falciparum cytoadherence using immortalized human brain capillary endothelial cells. Int. J. Parasitol., 1996, 26(6), 647-655.
[http://dx.doi.org/10.1016/0020-7519(96)00027-6] [PMID: 8875310]
[168]
Sano, Y.; Kashiwamura, Y.; Abe, M.; Dieu, L.H.; Huwyler, J.; Shimizu, F.; Haruki, H.; Maeda, T.; Saito, K.; Tasaki, A.; Kanda, T. Stable human brain microvascular endothelial cell line retaining its barrier‐specific nature independent of the passage number. Clin. Exp. Neuroimmunol., 2013, 4(1), 92-103.
[http://dx.doi.org/10.1111/cen3.12001]
[169]
Watson, P.M.D.; Paterson, J.C.; Thom, G.; Ginman, U.; Lundquist, S.; Webster, C.I. Modelling the endothelial blood-CNS barriers: A method for the production of robust in vitromodels of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci., 2013, 14(1), 59.
[http://dx.doi.org/10.1186/1471-2202-14-59] [PMID: 23773766]
[170]
Booth, R.; Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip, 2012, 12(10), 1784-1792.
[http://dx.doi.org/10.1039/c2lc40094d] [PMID: 22422217]
[171]
Poller, B.; Gutmann, H.; Krähenbühl, S.; Weksler, B.; Romero, I.; Couraud, P.O.; Tuffin, G.; Drewe, J.; Huwyler, J. The human brain endothelial cell line hCMEC/D3 as a human blood‐brain barrier model for drug transport studies. J. Neurochem., 2008, 107(5), 1358-1368.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05730.x] [PMID: 19013850]
[172]
Camós, S.; Mallolas, J. Experimental models for assaying microvascular endothelial cell pathophysiology in stroke. Molecules, 2010, 15(12), 9104-9134.
[http://dx.doi.org/10.3390/molecules15129104] [PMID: 21150829]
[173]
Even-Ram, S.; Yamada, K.M. Cell migration in 3D matrix. Curr. Opin. Cell Biol., 2005, 17(5), 524-532.
[http://dx.doi.org/10.1016/j.ceb.2005.08.015] [PMID: 16112853]
[174]
Cecchelli, R.; Dehouck, B.; Descamps, L.; Fenart, L.; Buée-Scherrer, V.; Duhem, C.; Lundquist, S.; Rentfel, M.; Torpier, G.; Dehouck, M.P. In vitro model for evaluating drug transport across the blood-brain barrier. Adv. Drug Deliv. Rev., 1999, 36(2-3), 165-178.
[http://dx.doi.org/10.1016/S0169-409X(98)00083-0] [PMID: 10837714]
[175]
Wuest, D.M.; Wing, A.M.; Lee, K.H. Membrane configuration optimization for a murine in vitro blood-brain barrier model. J. Neurosci. Methods, 2013, 212(2), 211-221.
[http://dx.doi.org/10.1016/j.jneumeth.2012.10.016] [PMID: 23131353]
[176]
Chiu, J.J.; Chen, L.J.; Chang, S.F.; Lee, P.L.; Lee, C.I.; Tsai, M.C.; Lee, D.Y.; Hsieh, H.P.; Usami, S.; Chien, S. Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: role of NF-kappaB. Arterioscler. Thromb. Vasc. Biol., 2005, 25(5), 963-969.
[http://dx.doi.org/10.1161/01.ATV.0000159703.43374.19] [PMID: 15718492]
[177]
Desai, S.Y.; Marroni, M.; Cucullo, L.; Krizanac-Bengez, L.; Mayberg, M.R.; Hossain, M.T.; Grant, G.G.; Janigro, D. Mechanisms of endothelial survival under shear stress. Endothelium, 2002, 9(2), 89-102.
[http://dx.doi.org/10.1080/10623320212004] [PMID: 12200960]
[178]
DeStefano, J.G.; Williams, A.; Wnorowski, A.; Yimam, N.; Searson, P.C.; Wong, A.D. Real-time quantification of endothelial response to shear stress and vascular modulators. Integr. Biol., 2017, 9(4), 362-374.
[http://dx.doi.org/10.1039/C7IB00023E] [PMID: 28345713]
[179]
Partyka, P.P.; Godsey, G.A.; Galie, J.R.; Kosciuk, M.C.; Acharya, N.K.; Nagele, R.G.; Galie, P.A. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier. Biomaterials, 2017, 115, 30-39.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.012] [PMID: 27886553]
[180]
Kaya, M.; Ahishali, B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. In: Permeability Barrier: Methods and Protocols, Methods in Molecular Biology; Turksen, K., Ed.; Humana Press, 2011; pp. 369-382.
[http://dx.doi.org/10.1007/978-1-61779-191-8_25]
[181]
Wilhelm, I.; Fazakas, C.; Krizbai, I. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp., 2011, 71(1), 113-128.
[http://dx.doi.org/10.55782/ane-2011-1828] [PMID: 21499332]
[182]
Obermeier, B.; Daneman, R.; Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med., 2013, 19(12), 1584-1596.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[183]
Czupalla, C.J.; Liebner, S.; Devraj, K. In vitro models of the blood-brain barrier. In: Cerebral angiogenesis methods in molecular biology; Milner, R., Ed.; Humana Press: New York, NY, 2014; pp. 415-437.
[http://dx.doi.org/10.1007/978-1-4939-0320-7_34]
[184]
Rahman, N.A.; Sharudin, A.; Diah, S.; Muharram, S.H. Serotyping of Brunei pneumococcal clinical strains and the investigation of their capability to adhere and invade a brain endothelium model. Microb. Pathog., 2017, 110, 352-358.
[http://dx.doi.org/10.1016/j.micpath.2017.07.021] [PMID: 28711510]
[185]
Williams-Medina, A.; Deblock, M.; Janigro, D. In vitro models of the blood-brain barrier: Tools in translational medicine. Front. Med. Technol., 2021, 2, 623950.
[http://dx.doi.org/10.3389/fmedt.2020.623950] [PMID: 35047899]
[186]
Alimonti, J.B.; Ribecco-Lutkiewicz, M.; Sodja, C.; Jezierski, A.; Stanimirovic, D.B.; Liu, Q.; Haqqani, A.S.; Conlan, W.; Bani-Yaghoub, M. Zika virus crosses an in vitro human blood brain barrier model. Fluids Barriers CNS, 2018, 15(1), 15.
[http://dx.doi.org/10.1186/s12987-018-0100-y] [PMID: 29759080]
[187]
Ribecco-Lutkiewicz, M.; Sodja, C.; Haukenfrers, J.; Haqqani, A.S.; Ly, D.; Zachar, P.; Baumann, E.; Ball, M.; Huang, J.; Rukhlova, M.; Martina, M.; Liu, Q.; Stanimirovic, D.; Jezierski, A.; Bani-Yaghoub, M. A novel human induced pluripotent stem cell blood-brain barrier model: Applicability to study antibody-triggered receptor-mediated transcytosis. Sci. Rep., 2018, 8(1), 1873.
[http://dx.doi.org/10.1038/s41598-018-19522-8] [PMID: 29382846]
[188]
Wong, M.K.; Gotlieb, A.I. Endothelial cell monolayer integrity. I. Characterization of dense peripheral band of microfilaments. Arteriosclerosis, 1986, 6(2), 212-219.
[http://dx.doi.org/10.1161/01.ATV.6.2.212] [PMID: 3954675]
[189]
Kazakoff, P.W.; McGuire, T.R.; Hoie, E.B.; Cano, M.; Iversen, P.L. An in vitro model for endothelial permeability: Assessment of monolayer integrity. Vitr Cell Dev Biol - Anim, 1995, 31(11), 846-852.
[190]
Cooray, H.C.; Blackmore, C.G.; Maskell, L.; Barrand, M.A. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport, 2002, 13(16), 2059-2063.
[http://dx.doi.org/10.1097/00001756-200211150-00014] [PMID: 12438926]
[191]
Zhang, W.; Mojsilovic-Petrovic, J.; Andrade, M.F.; Zhang, H.; Ball, M.; Stanimirovic, D.B. Expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J., 2003, 17(14), 1-24.
[http://dx.doi.org/10.1096/fj.02-1131fje] [PMID: 12958161]
[192]
Kido, Y.; Tamai, I.; Okamoto, M.; Suzuki, F.; Tsuji, A. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm. Res., 2000, 17(1), 55-62.
[http://dx.doi.org/10.1023/A:1007518525161] [PMID: 10714609]
[193]
Zheng, P.P.; Romme, E.; Spek, P.J.; Dirven, C.M.F.; Willemsen, R.; Kros, J.M. Glut1/SLC2A1 is crucial for the development of the blood‐brain barrier in vivo. Ann. Neurol., 2010, 68(6), 835-844.
[http://dx.doi.org/10.1002/ana.22318] [PMID: 21194153]
[194]
Hersom, M.; Helms, H.C.; Pretzer, N.; Goldeman, C.; Jensen, A.I.; Severin, G.; Nielsen, M.S.; Holm, R.; Brodin, B. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol. Cell. Neurosci., 2016, 76, 59-67.
[http://dx.doi.org/10.1016/j.mcn.2016.08.009] [PMID: 27567687]
[195]
Hayashi, Y.; Nomura, M.; Yamagishi, S.I.; Harada, S.I.; Yamashita, J.; Yamamoto, H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 1997, 19(1), 13-26.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199701)19:1<13:AID-GLIA2>3.0.CO;2-B] [PMID: 8989564]
[196]
Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and dysfunction of the blood-brain barrier. Cell, 2015, 163(5), 1064-1078.
[http://dx.doi.org/10.1016/j.cell.2015.10.067] [PMID: 26590417]
[197]
Bazzoni, G.; Dejana, E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol. Rev., 2004, 84(3), 869-901.
[http://dx.doi.org/10.1152/physrev.00035.2003] [PMID: 15269339]
[198]
Simi, A.; Tsakiri, N.; Wang, P.; Rothwell, N.J. Interleukin-1 and inflammatory neurodegeneration. Biochem. Soc. Trans., 2007, 35(5), 1122-1126.
[http://dx.doi.org/10.1042/BST0351122] [PMID: 17956293]
[199]
Shaftel, S.S.; Griffin, W.S.T.; O’Banion, M.K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: An evolving perspective. J. Neuroinflammation, 2008, 5(1), 7.
[http://dx.doi.org/10.1186/1742-2094-5-7] [PMID: 18302763]
[200]
Lutgendorf, M.A.; Ippolito, D.L.; Mesngon, M.T.; Tinnemore, D.; Dehart, M.J.; Dolinsky, B.M.; Napolitano, P.G. Effect of dexamethasone administered with magnesium sulfate on inflammation-mediated degradation of the blood-brain barrier using an in vitro model. Reprod. Sci., 2014, 21(4), 483-491.
[http://dx.doi.org/10.1177/1933719113503410] [PMID: 24077438]
[201]
Burkert, K.; Moodley, K.; Angel, C.E.; Brooks, A.; Graham, E.S. Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem. Int., 2012, 60(6), 573-580.
[http://dx.doi.org/10.1016/j.neuint.2011.09.002] [PMID: 21939706]
[202]
Shigemoto-Mogami, Y.; Hoshikawa, K.; Sato, K. Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front. Cell. Neurosci., 2018, 12, 494.
[http://dx.doi.org/10.3389/fncel.2018.00494] [PMID: 30618641]
[203]
Banks, W.A.; Gray, A.M.; Erickson, M.A.; Salameh, T.S.; Damodarasamy, M.; Sheibani, N.; Meabon, J.S.; Wing, E.E.; Morofuji, Y.; Cook, D.G.; Reed, M.J. Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflammation, 2015, 12(1), 223.
[http://dx.doi.org/10.1186/s12974-015-0434-1] [PMID: 26608623]
[204]
Greenwood, J.; Howes, R.; Lightman, S. The blood-retinal barrier in experimental autoimmune uveoretinitis. Leukocyte interactions and functional damage. Lab. Invest., 1994, 70(1), 39-52.
[PMID: 8302017]
[205]
Abadier, M.; Jahromi, H.N.; Alves, C.L.; Boscacci, R.; Vestweber, D.; Barnum, S.; Deutsch, U.; Engelhardt, B.; Lyck, R. Cell surface levels of endothelial ICAM‐1 influence the transcellular or paracellular T‐cell diapedesis across the blood-brain barrier. Eur. J. Immunol., 2015, 45(4), 1043-1058.
[http://dx.doi.org/10.1002/eji.201445125] [PMID: 25545837]
[206]
Kim, K.S. Current concepts on the pathogenesis of Escherichia coli meningitis. Curr. Opin. Infect. Dis., 2012, 25(3), 273-278.
[http://dx.doi.org/10.1097/QCO.0b013e3283521eb0] [PMID: 22395761]
[207]
Yang, R.C.; Qu, X.Y.; Xiao, S.Y.; Li, L.; Xu, B.J.; Fu, J.Y.; Lv, Y.J.; Amjad, N.; Tan, C.; Kim, K.S.; Chen, H.C.; Wang, X.R. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J. Neuroinflammation, 2019, 16(1), 101.
[http://dx.doi.org/10.1186/s12974-019-1497-1] [PMID: 31092253]
[208]
Wang, X.; Maruvada, R.; Morris, A.J.; Liu, J.O.; Wolfgang, M.J.; Baek, D.J.; Bittman, R.; Kim, K.S. Sphingosine 1-phosphate activation of EGFR as a novel target for meningitic Escherichia coli penetration of the blood-brain barrier. PLoS Pathog., 2016, 12(10), e1005926.
[http://dx.doi.org/10.1371/journal.ppat.1005926] [PMID: 27711202]
[209]
Iovino, F.; Orihuela, C.J.; Moorlag, H.E.; Molema, G.; Bijlsma, J.J.E. Interactions between blood-borne Streptococcus pneumoniae and the blood-brain barrier preceding meningitis. PLoS One, 2013, 8(7), e68408.
[http://dx.doi.org/10.1371/journal.pone.0068408] [PMID: 23874613]
[210]
Orihuela, C.J.; Mahdavi, J.; Thornton, J.; Mann, B.; Wooldridge, K.G.; Abouseada, N.; Oldfield, N.J.; Self, T.; Ala’Aldeen, D.A.A.; Tuomanen, E.I. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J. Clin. Invest., 2009, 119(6), 1638-1646.
[http://dx.doi.org/10.1172/JCI36759] [PMID: 19436113]
[211]
Henderson, B.; Nair, S.; Pallas, J.; Williams, M.A. Fibronectin: A multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol. Rev., 2011, 35(1), 147-200.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00243.x] [PMID: 20695902]
[212]
Kim, B.J.; Bee, O.B.; McDonagh, M.A.; Stebbins, M.J.; Palecek, S.P.; Doran, K.S.; Shusta, E.V. Modeling group B streptococcus and blood-brain barrier interaction by using induced pluripotent stem cell-derived brain endothelial cells. MSphere, 2017, 2(6), e00398-e17.
[http://dx.doi.org/10.1128/mSphere.00398-17] [PMID: 29104935]
[213]
Mu, R.; Kim, B.J.; Paco, C.; Del Rosario, Y.; Courtney, H.S.; Doran, K.S. Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. Infect. Immun., 2014, 82(6), 2276-2286.
[http://dx.doi.org/10.1128/IAI.01559-13] [PMID: 24643538]
[214]
Ferguson, M.C.; Saul, S.; Fragkoudis, R.; Weisheit, S.; Cox, J.; Patabendige, A.; Sherwood, K.; Watson, M.; Merits, A.; Fazakerley, J.K. Ability of the encephalitic arbovirus Semliki Forest virus to cross the blood-brain barrier is determined by the charge of the E2 glycoprotein. J. Virol., 2015, 89(15), 7536-7549.
[http://dx.doi.org/10.1128/JVI.03645-14] [PMID: 25972559]
[215]
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; van der Voort, P.H.J.; Mulder, D.J.; van Goor, H. Angiotensin‐converting enzyme 2 (ACE2), SARS‐COV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). J. Pathol., 2020, 251(3), 228-248.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[216]
Doobay, M.F.; Talman, L.S.; Obr, T.D.; Tian, X.; Davisson, R.L.; Lazartigues, E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R373-R381.
[http://dx.doi.org/10.1152/ajpregu.00292.2006] [PMID: 16946085]
[217]
Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[218]
Solomon, I.H.; Normandin, E.; Bhattacharyya, S.; Mukerji, S.S.; Keller, K.; Ali, A.S.; Adams, G.; Hornick, J.L.; Padera, R.F., Jr; Sabeti, P. Neuropathological features of COVID-19. N. Engl. J. Med., 2020, 383(10), 989-992.
[http://dx.doi.org/10.1056/NEJMc2019373] [PMID: 32530583]
[219]
Wang, Y.; Cao, Y.; Mangalam, A.K.; Guo, Y.; LaFrance-Corey, R.G.; Gamez, J.D.; Atanga, P.A.; Clarkson, B.D.; Zhang, Y.; Wang, E.; Angom, R.S.; Dutta, K.; Ji, B.; Pirko, I.; Lucchinetti, C.F.; Howe, C.L.; Mukhopadhyay, D. Neuropilin-1 modulates interferon-γ-stimulated signaling in brain microvascular endothelial cells. J. Cell Sci., 2016, 129(20), 3911-3921.
[http://dx.doi.org/10.1242/jcs.190702]
[220]
Burks, S.M.; Rosas-Hernandez, H.; Ramirez-Lee, A.M.; Cuevas, E.; Talpos, J.C. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav. Immun., 2021, 95, 7-14.
[http://dx.doi.org/10.1016/j.bbi.2020.12.031] [PMID: 33412255]
[221]
Atlas, H.P.. The human protein atlas., 2021. https://www.proteinatlas.org/
[222]
Cabirac, G.F.; Murray, R.S.; McLaughlin, L.B.; Skolnick, D.M.; Hogue, B.; Dorovini-Zis, K.; Didier, P.J. In vitro interaction of coronaviruses with primate and human brain microvascular endothelial cells. Adv. Exp. Med. Biol., 1995, 380, 79-88.
[http://dx.doi.org/10.1007/978-1-4615-1899-0_11] [PMID: 8830550]
[223]
Nuovo, G.J.; Magro, C.; Shaffer, T.; Awad, H.; Suster, D.; Mikhail, S.; He, B.; Michaille, J.J.; Liechty, B.; Tili, E. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann. Diagn. Pathol., 2021, 51, 151682.
[http://dx.doi.org/10.1016/j.anndiagpath.2020.151682] [PMID: 33360731]
[224]
Reynolds, J.L.; Mahajan, S.D. SARS-COV2 alters blood brain barrier integrity contributing to neuro-inflammation. J. Neuroimmune Pharmacol., 2021, 16(1), 4-6.
[http://dx.doi.org/10.1007/s11481-020-09975-y] [PMID: 33405097]
[225]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[226]
Buzhdygan, T.P.; DeOre, B.J.; Baldwin-Leclair, A.; Bullock, T.A.; McGary, H.M.; Khan, J.A.; Razmpour, R.; Hale, J.F.; Galie, P.A.; Potula, R.; Andrews, A.M.; Ramirez, S.H. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis., 2020, 146, 105131.
[http://dx.doi.org/10.1016/j.nbd.2020.105131] [PMID: 33053430]
[227]
Al-Harthi, L.; Campbell, E.; Schneider, J.A.; Bennett, D.A. What HIV in the brain can teach us about SARS-CoV-2 neurological complications? AIDS Res. Hum. Retroviruses, 2021, 37(4), 255-265.
[http://dx.doi.org/10.1089/aid.2020.0161] [PMID: 32683890]
[228]
Edwards, J.A.; Denis, F.; Talbot, P.J. Activation of glial cells by human coronavirus OC43 infection. J. Neuroimmunol., 2000, 108(1-2), 73-81.
[http://dx.doi.org/10.1016/S0165-5728(00)00266-6] [PMID: 10900340]
[229]
Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2). J. Med. Virol., 2020, 92(7), 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[230]
Sardu, C.; Gambardella, J.; Morelli, M.B.; Wang, X.; Marfella, R.; Santulli, G. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? a comprehensive evaluation of clinical and basic evidence. J. Clin. Med., 2020, 9(5), 1417.
[http://dx.doi.org/10.3390/jcm9051417] [PMID: 32403217]
[231]
Stewart, J.N.; Mounir, S.; Talbot, P.J. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology, 1992, 191(1), 502-505.
[http://dx.doi.org/10.1016/0042-6822(92)90220-J] [PMID: 1413524]
[232]
Antinori, A.; Arendt, G.; Becker, J.T.; Brew, B.J.; Byrd, D.A.; Cherner, M.; Clifford, D.B.; Cinque, P.; Epstein, L.G.; Goodkin, K.; Gisslen, M.; Grant, I.; Heaton, R.K.; Joseph, J.; Marder, K.; Marra, C.M.; McArthur, J.C.; Nunn, M.; Price, R.W.; Pulliam, L.; Robertson, K.R.; Sacktor, N.; Valcour, V.; Wojna, V.E. Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 2007, 69(18), 1789-1799.
[http://dx.doi.org/10.1212/01.WNL.0000287431.88658.8b] [PMID: 17914061]
[233]
McArthur, J.C.; Brew, B.J. HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS, 2010, 24(9), 1367-1370.
[http://dx.doi.org/10.1097/QAD.0b013e3283391d56] [PMID: 20559041]
[234]
McFarren, A.; Lopez, L.; Williams, D.W.; Veenstra, M.; Bryan, R.A.; Goldsmith, A.; Morgenstern, A.; Bruchertseifer, F.; Zolla-Pazner, S.; Gorny, M.K.; Eugenin, E.A.; Berman, J.W.; Dadachova, E. A fully human antibody to gp41 selectively eliminates HIV-infected cells that transmigrated across a model human blood brain barrier. AIDS, 2016, 30(4), 563-572.
[http://dx.doi.org/10.1097/QAD.0000000000000968] [PMID: 26595540]
[235]
Persidsky, Y.; Hill, J.; Zhang, M.; Dykstra, H.; Winfield, M.; Reichenbach, N.L.; Potula, R.; Mukherjee, A.; Ramirez, S.H.; Rom, S. Dysfunction of brain pericytes in chronic neuroinflammation. J. Cereb. Blood Flow Metab., 2016, 36(4), 794-807.
[http://dx.doi.org/10.1177/0271678X15606149] [PMID: 26661157]
[236]
Persidsky, Y.; Zheng, J.; Miller, D.; Gendelman, H.E. Mononuclear phagocytes mediate blood-brain barrier compromise and neuronal injury during HIV-1-associated dementia. J. Leukoc. Biol., 2000, 68(3), 413-422.
[http://dx.doi.org/10.1189/jlb.68.3.413] [PMID: 10985259]
[237]
Solomon, T.; Patabendige, A.; Whitley, R.J. Arthropod-borne viral encephalititdes. In: Infections of the central nervous system; Scheld, WMW, J, R.; Marra, C.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 210-238.
[238]
Verma, S.; Lo, Y.; Chapagain, M.; Lum, S.; Kumar, M.; Gurjav, U.; Luo, H.; Nakatsuka, A.; Nerurkar, V.R. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology, 2009, 385(2), 425-433.
[http://dx.doi.org/10.1016/j.virol.2008.11.047] [PMID: 19135695]
[239]
Velandia-Romero, M.L.; Calderón-Peláez, M.A.; Castellanos, J.E. In vitro infection with dengue virus induces changes in the structure and function of the mouse brain endothelium. PLoS One, 2016, 11(6), e0157786.
[http://dx.doi.org/10.1371/journal.pone.0157786] [PMID: 27336851]
[240]
Turtle, L.; Griffiths, M.J.; Solomon, T. Encephalitis caused by flaviviruses. QJM, 2012, 105(3), 219-223.
[http://dx.doi.org/10.1093/qjmed/hcs013] [PMID: 22367423]
[241]
da Silva, I.R.F.; Frontera, J.A.; de Filippis, B.A.M.; Nascimento, O.J.M. Neurologic complications associated with the Zika virus in Brazilian adults. JAMA Neurol., 2017, 74(10), 1190-1198.
[http://dx.doi.org/10.1001/jamaneurol.2017.1703] [PMID: 28806453]
[242]
Hoofnagle, J.H. Course and outcome of hepatitis C. Hepatology, 2002, 36(5), S21-S29.
[PMID: 12407573]
[243]
Farquhar, M.J.; McKeating, J.A. Primary hepatocytes as targets for Hepatitis C virus replication. J. Viral Hepat., 2008, 15(12), 849-854.
[http://dx.doi.org/10.1111/j.1365-2893.2008.01051.x] [PMID: 19087224]
[244]
Ploss, A.; Evans, M.J.; Gaysinskaya, V.A.; Panis, M.; You, H.; de Jong, Y.P.; Rice, C.M. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature, 2009, 457(7231), 882-886.
[http://dx.doi.org/10.1038/nature07684] [PMID: 19182773]
[245]
Fletcher, N.F.; Wilson, G.K.; Murray, J.; Hu, K.; Lewis, A.; Reynolds, G.M.; Stamataki, Z.; Meredith, L.W.; Rowe, I.A.; Luo, G.; Lopez-Ramirez, M.A.; Baumert, T.F.; Weksler, B.; Couraud, P.O.; Kim, K.S.; Romero, I.A.; Jopling, C.; Morgello, S.; Balfe, P.; McKeating, J.A. Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology, 2012, 142(3), 634-643.e6.
[http://dx.doi.org/10.1053/j.gastro.2011.11.028] [PMID: 22138189]
[246]
Untucht, C.; Rasch, J.; Fuchs, E.; Rohde, M.; Bergmann, S.; Steinert, M. An optimized in vitro blood-brain barrier model reveals bidirectional transmigration of African trypanosome strains. Microbiology, 2011, 157(10), 2933-2941.
[http://dx.doi.org/10.1099/mic.0.049106-0] [PMID: 21737496]
[247]
Howland, S.W.; Poh, C.M.; Rénia, L. Activated brain endothelial eells cross- present malaria antigen. PLoS Pathog., 2015, 11(6), e1004963.
[http://dx.doi.org/10.1371/journal.ppat.1004963] [PMID: 26046849]
[248]
Zougbédé, S.; Miller, F.; Ravassard, P.; Rebollo, A.; Cicéron, L.; Couraud, P.O.; Mazier, D.; Moreno, A. Metabolic acidosis induced by Plasmodium falciparum intraerythrocytic stages alters blood-brain barrier integrity. J. Cereb. Blood Flow Metab., 2011, 31(2), 514-526.
[http://dx.doi.org/10.1038/jcbfm.2010.121] [PMID: 20683453]
[249]
Lachenmaier, S.M.; Deli, M.A.; Meissner, M.; Liesenfeld, O. Intracellular transport of toxoplasma gondii through the blood-brain barrier. J. Neuroimmunol., 2011, 232(1-2), 119-130.
[http://dx.doi.org/10.1016/j.jneuroim.2010.10.029] [PMID: 21106256]
[250]
Kanmogne, G.D.; Schall, K.; Leibhart, J.; Knipe, B.; Gendelman, H.E.; Persidsky, Y. HIV-1 gp120 compromises blood-brain barrier integrity and enhances monocyte migration across blood-brain barrier: Implication for viral neuropathogenesis. J. Cereb. Blood Flow Metab., 2007, 27(1), 123-134.
[http://dx.doi.org/10.1038/sj.jcbfm.9600330] [PMID: 16685256]
[251]
Mahajan, S.D.; Aalinkeel, R.; Sykes, D.E.; Reynolds, J.L.; Bindukumar, B.; Adal, A.; Qi, M.; Toh, J.; Xu, G.; Prasad, P.N.; Schwartz, S.A. Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res., 2008, 1203, 133-148.
[http://dx.doi.org/10.1016/j.brainres.2008.01.093] [PMID: 18329007]
[252]
Persidsky, Y.; Stins, M.; Way, D.; Witte, M.H.; Weinand, M.; Kim, K.S.; Bock, P.; Gendelman, H.E.; Fiala, M. A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J. Immunol., 1997, 158(7), 3499-3510.
[http://dx.doi.org/10.4049/jimmunol.158.7.3499] [PMID: 9120312]
[253]
Rochfort, K.D.; Cummins, P.M. In vitro cell models of the human blood-brain barrier: Demonstrating the beneficial influence of shear stress on brain microvascular endothelial cell phenotype. In: Blood-Brain Barrier; Barichello, T., Ed.; Springer New York: New York, NY, 2019; pp. 71-98.
[http://dx.doi.org/10.1007/978-1-4939-8946-1_5]
[254]
Perel, P.; Roberts, I.; Sena, E.; Wheble, P.; Briscoe, C.; Sandercock, P.; Macleod, M.; Mignini, L.E.; Jayaram, P.; Khan, K.S. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ, 2007, 334(7586), 197-200.
[http://dx.doi.org/10.1136/bmj.39048.407928.BE] [PMID: 17175568]
[255]
Wasielewska, J.M.; Da, J.C.; Chaves, S.; White, A.R.; Oikari, L.E. To understand drug delivery in Alzheimer’s disease. Alzheimer’s disease: drug discovery; Huang, X., Ed.; Exon Publications: Brisbane (AU), 2020, pp. 117-134.
[http://dx.doi.org/10.36255/exonpublications.alzheimersdisease.2020.ch7]
[256]
Brown, J.A.; Faley, S.L.; Shi, Y.; Hillgren, K.M.; Sawada, G.A.; Baker, T.K.; Wikswo, J.P.; Lippmann, E.S. Advances in blood-brain barrier modeling in microphysiological systems highlight critical differences in opioid transport due to cortisol exposure. Fluids Barriers CNS, 2020, 17(1), 38.
[http://dx.doi.org/10.1186/s12987-020-00200-9] [PMID: 32493346]
[257]
Summerfield, S.G.; Lucas, A.J.; Porter, R.A.; Jeffrey, P.; Gunn, R.N.; Read, K.R.; Stevens, A.J.; Metcalf, A.C.; Osuna, M.C.; Kilford, P.J.; Passchier, J.; Ruffo, A.D. Toward an improved prediction of human in vivo brain penetration. Xenobiotica, 2008, 38(12), 1518-1535.
[http://dx.doi.org/10.1080/00498250802499459] [PMID: 18979396]
[258]
Lacombe, O.; Videau, O.; Chevillon, D.; Guyot, A.C.; Contreras, C.; Blondel, S.; Nicolas, L.; Ghettas, A.; Bénech, H.; Thevenot, E.; Pruvost, A.; Bolze, S.; Krzaczkowski, L.; Prévost, C.; Mabondzo, A. In vitro primary human and animal cell-based blood-brain barrier models as a screening tool in drug discovery. Mol. Pharm., 2011, 8(3), 651-663.
[http://dx.doi.org/10.1021/mp1004614] [PMID: 21438632]
[259]
Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol., 2017, 133(2), 155-175.
[http://dx.doi.org/10.1007/s00401-016-1662-x] [PMID: 28025715]
[260]
Breschi, A.; Gingeras, T.R.; Guigó, R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet., 2017, 18(7), 425-440.
[http://dx.doi.org/10.1038/nrg.2017.19] [PMID: 28479595]
[261]
Nguyen, T.V.V.; Frye, J.B.; Zbesko, J.C.; Stepanovic, K.; Hayes, M.; Urzua, A.; Serrano, G.; Beach, T.G.; Doyle, K.P. Multiplex immunoassay characterization and species comparison of inflammation in acute and non-acute ischemic infarcts in human and mouse brain tissue. Acta Neuropathol. Commun., 2016, 4(1), 100.
[http://dx.doi.org/10.1186/s40478-016-0371-y] [PMID: 27600707]
[262]
Wang, M.M.; Zhang, X.; Lee, S.J.; Maripudi, S.; Keep, R.F.; Johnson, A.M.; Stamatovic, S.M.; Andjelkovic, A.V. Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function. Sci. Rep., 2018, 8(1), 10042.
[http://dx.doi.org/10.1038/s41598-018-28190-7] [PMID: 29968755]
[263]
Urich, E.; Lazic, S.E.; Molnos, J.; Wells, I.; Freskgård, P.O. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLoS One, 2012, 7(5), e38149.
[http://dx.doi.org/10.1371/journal.pone.0038149] [PMID: 22675443]
[264]
Hoshi, Y.; Uchida, Y.; Tachikawa, M.; Inoue, T.; Ohtsuki, S.; Terasaki, T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J. Pharm. Sci., 2013, 102(9), 3343-3355.
[http://dx.doi.org/10.1002/jps.23575] [PMID: 23650139]
[265]
O’Brown, N.M.; Pfau, S.J.; Gu, C. Bridging barriers: A comparative look at the blood-brain barrier across organisms. Genes Dev., 2018, 32(7-8), 466-478.
[http://dx.doi.org/10.1101/gad.309823.117] [PMID: 29692355]
[266]
Oberheim, N.A.; Wang, X.; Goldman, S.; Nedergaard, M. Astrocytic complexity distinguishes the human brain. Trends Neurosci., 2006, 29(10), 547-553.
[http://dx.doi.org/10.1016/j.tins.2006.08.004] [PMID: 16938356]
[267]
Prashanth, A.; Donaghy, H.; Stoner, S.P.; Hudson, A.L.; Wheeler, H.R.; Diakos, C.I.; Howell, V.M.; Grau, G.E.; McKelvey, K.J. Are in vitro human blood-brain-tumor‐barriers suitable replacements for in vivo models of brain permeability for novel therapeutics? Cancers, 2021, 13(5), 955.
[http://dx.doi.org/10.3390/cancers13050955] [PMID: 33668807]
[268]
Ito, R.; Umehara, K.; Suzuki, S.; Kitamura, K.; Nunoya, K.; Yamaura, Y.; Imawaka, H.; Izumi, S.; Wakayama, N.; Komori, T.; Anzai, N.; Akita, H.; Furihata, T. A human immortalized cell-based blood-brain barrier triculture model: Development and characterization as a promising tool for drug-brain permeability studies. Mol. Pharm., 2019, 16(11), 4461-4471.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00519] [PMID: 31573814]
[269]
Cioni, C.; Turlizzi, E.; Zanelli, U.; Oliveri, G.; Annunziata, P. Expression of tight junction and drug efflux transporter proteins in an in vitro model of human blood-brain barrier. Front. Psychiatry, 2012, 3, 47.
[http://dx.doi.org/10.3389/fpsyt.2012.00047] [PMID: 22593745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy