Skip to main content
Log in

A singular perturbation problem for a nonlinear Schrödinger system with three wave interaction

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we consider the locations of spikes of ground states for the following nonlinear Schrödinger system with three wave interaction

as \(\varepsilon \rightarrow +0\). In addition, we study the asymptotic behavior of a quantity \(\inf _{x \in {\mathbb {R}}^N} {\tilde{c}}({{\textbf{V}}}(x);\gamma )\) as \(\gamma \rightarrow \infty \) which determines locations of spikes. In particular, we give the sharp asymptotic behavior of a ground states of (\({{\mathcal {P}}}_\varepsilon \)) for \(\gamma \) sufficiently large and small, respectively. Furthermore, we consider when all the ground states of (\({{\mathcal {P}}}_\varepsilon \)) are scalar or vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Figueiredo, G.M., Furtado, M.F.: Multiplicity of solutions for elliptic systems via local mountain pass method. Commun. Pure Appl. Anal. 8, 1745–1758 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 104 (2007), xii+316 pp

  3. Ardila, A.H.: Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction. Nonlinear Anal. 167, 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  4. Burchard, A., Hajaiej, H.: Rearrangement inequalities for functionals with monotone integrands. J. Funct. Anal. 233, 561–582 (2006)

    Article  MathSciNet  Google Scholar 

  5. Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163, 41–56 (2000)

    Article  MathSciNet  Google Scholar 

  6. Chang, X., Sato, Y: Localized solutions of nonlinear Schrödinger systems with critical frequency for infinite attractive case, NoDEA Nonlinear Differ. Equ. Appl., 26 (2019), 31 pp

  7. Chang, X., Sato, Y.: Multiplicity of localized solutions of nonlinear Schrödinger systems for infinite attractive case. J. Math. Anal. Appl. 491, 124358 (2020). (17)

    Article  MathSciNet  Google Scholar 

  8. Che, G., Chen, H., Wu, T.: Bound state positive solutions for a class of elliptic system with Hartree nonlinearity. Commun. Pure Appl. Anal. 19, 3697–3722 (2020)

    Article  MathSciNet  Google Scholar 

  9. Colin, M., Colin, T.: On a quasilinear Zakharov system describing laser-plasma interactions. Differ. Integral Equ. 17, 297–330 (2004)

    MathSciNet  Google Scholar 

  10. Colin, M., Colin, T.: A numerical model for the Raman amplification for laser-plasma interaction. J. Comput. Appl. Math. 193, 535–562 (2006)

    Article  MathSciNet  Google Scholar 

  11. Colin, M., Colin, T., Ohta, M.: Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction. Funkcial. Ekvac. 52, 371–380 (2009)

    Article  MathSciNet  Google Scholar 

  12. Colin, M., Colin, T., Ohta, M.: Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26, 2211–2226 (2009)

    Article  MathSciNet  Google Scholar 

  13. de Figueiredo, D. G., Mitidieri, E.: Maximum principles for linear elliptic systems, Rend. Istit. Mat. Univ. Trieste, (1992), 36–66

  14. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  15. Gilbarg D., Trudinger, N. S.: Elliptic partial differential equations of second order, Second edition, Springer-Verlag, Berlin, 224 (1983), xiii+513 pp

  16. Ikoma, N.: Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA Nonlinear Differ. Equ. Appl. 16, 555–567 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kurata, K., Osada, Y.: Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction, Commun. Pure. Appl. Anal. 20, 4239–4251 (2021)

    MathSciNet  Google Scholar 

  18. Kurata, K., Osada, Y.: Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete Contin. Dyn. Syst. Ser. B 27, 1511–1547 (2022)

    Article  MathSciNet  Google Scholar 

  19. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u - u + u^p = 0\) in \({\mathbb{R} }^n\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  Google Scholar 

  20. Lin, T.-C., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)

    Article  Google Scholar 

  21. Lopes, O.: Stability of solitary waves for a three-wave interaction model. Electron. J. Differ. Equ. 2014, 9 (2014)

    MathSciNet  Google Scholar 

  22. Osada, Y.: Energy asymptotic expansion for a system of nonlinear Schrödinger equations with three wave interaction. SUT J. Math. 58, 51–75 (2022)

    Article  MathSciNet  Google Scholar 

  23. Osada, Y.: Existence of a minimizer for a nonlinear Schrödinger system with three wave interaction under non-symmetric potentials. Partial Differ. Equ. Appl. 3, 18 (2022)

    Article  Google Scholar 

  24. Pomponio, A.: Ground states for a system of nonlinear Schrödinger equations with three wave interaction. J. Math. Phys. 51, 093513 (2010)

    Article  MathSciNet  Google Scholar 

  25. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  26. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    Article  MathSciNet  Google Scholar 

  27. Tang, X., Lin, X.: Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems. Sci. China Math. 63, 113–134 (2020)

    Article  MathSciNet  Google Scholar 

  28. Tang, Z., Xie, H.: Multi-scale spike solutions for nonlinear coupled elliptic systems with critical frequency. NoDEA Nonlinear Differ. Equ. Appl. 28, 31 (2021)

    Article  MathSciNet  Google Scholar 

  29. Uriya, K.: Final state problem for a system of nonlinear Schrödinger equations with three wave interaction. J. Evol. Equ. 16, 173–191 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wang, J., Xu, J.: Existence of positive and sign-changing solutions to a coupled elliptic system with mixed nonlinearity growth. Ann. Henri Poincaré 21, 2815–2860 (2020)

    Article  MathSciNet  Google Scholar 

  31. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153, 229–244 (1993)

    Article  MathSciNet  Google Scholar 

  32. Wei, G.M.: Existence and concentration of ground states of coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 332, 846–862 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wei, G.M.: Existence and concentration of ground states of coupled nonlinear Schrödinger equations with bounded potentials. Chin. Ann. Math. Ser. B 29, 247–264 (2008)

    Article  Google Scholar 

  34. Wei, J., Wu, Y.: Ground states of nonlinear Schrödinger systems with mixed couplings. J. Math. Pures Appl. 141, 50–88 (2020)

    Article  MathSciNet  Google Scholar 

  35. Willem, M.: Minimax theorems, Progress in nonlinear differential equations and their applications, Birkhäuser Boston, Inc., Boston, MA, 24 (1996), x+162 pp

  36. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 36 (2022)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X., Zhang, Z.: Distribution of positive solutions to Schrödinger systems with linear and nonlinear couplings. J. Fixed Point Theory Appl. 22, 21 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP23KJ0293. The author would like to thank Professor Kazuhiro Kurata for his useful advices on the structure of this paper. He also would like to thank Professor Yohei Sato for his helpful comments. He also would like to thank the referees for carefully reading his manuscript and for giving many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Osada.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we consider the radial symmetry and monotonicity of classical solutions of elliptic system of the following type:

$$\begin{aligned} {\left\{ \begin{array}{ll} u_i'' + f_i(x,u_1,\dots ,u_k) = 0 &{} \text { in }\ {\mathbb {R}},\quad i =1,\dots ,k,\\ u_i > 0 &{} \text { in }\ {\mathbb {R}},\\ u_i(x) \rightarrow 0, &{} \text { as }\ \left|x\right| \rightarrow \infty , \end{array}\right. } \end{aligned}$$
(5.1)

where \(k \ge 1\).

Busca-Sirakov [5] studied the radial symmetry and monotonicity of classical solutions of elliptic systems for \(N \ge 2\). Moreover, Ikoma [16] considered the symmetry and monotonicity of the solutions in the case \(N=1\) and \(k=2\).

Here, we show the symmetry result for \(N=1\) after slight modification.

Let us note \({{\textbf{u}}} = (u_1,\dots ,u_k) \in (0,\infty )^k\) and

$$\begin{aligned} A(x,{{\textbf{u}}}) = \left( \frac{\partial f_i}{\partial u_j}(x,{{\textbf{u}}}) \right) _{1 \le i,j \le k}. \end{aligned}$$

We suppose that \(f_i \in C^1({\mathbb {R}} \times (0,\infty )^k,{\mathbb {R}})\) for all \(i=1,\dots ,k\) and (A0)–(A4):

  1. (A0)

    \(f_i(-x,{{\textbf{u}}}) = f_i(x,{{\textbf{u}}})\) for all \(x \in {\mathbb {R}}\), \({{\textbf{u}}} \in (0,\infty )^k\) and \(i=1,\dots ,k\).

  2. (A1)

    \((\partial f_i/\partial x)(x,{{\textbf{u}}}) \le 0\) for all \(x \ge 0\), \({{\textbf{u}}} \in (0,\infty )^k\) and \(i=1,\dots ,k\).

  3. (A2)

    \((\partial f_i / \partial u_j)(x,{{\textbf{u}}}) \ge 0\) for all \(x \in {\mathbb {R}}\), \({{\textbf{u}}} \in (0,\infty )^k\) and \(i,j \in \{1,\dots ,k\},\ i \ne j\).

  4. (A3)

    there exist constants \(\varepsilon > 0\) and \(R_1 > 0\) such that for any \(I,J \subset \{1,\dots ,k\}\), \(I \cap J = \emptyset \), \(I \cup J = \{1,\dots ,k\}\), there exist \(i_0 \in I\) and \(j_0 \in J\) such that \((\partial f_{i_0} / \partial u_{j_0})(x,{{\textbf{u}}}) > 0\) for all \((x,{{\textbf{u}}}) \in {{\mathcal {O}}}\), where

    $$\begin{aligned} {{\mathcal {O}}} = \{(x,{{\textbf{u}}}) \in {\mathbb {R}} \times (0,\infty )^k \mid \left|x\right| > R_1,\ \left|{{\textbf{u}}}\right| < \varepsilon \}. \end{aligned}$$
  5. (A4)

    all k-principal minors of \(-A(x,u_1,\dots ,u_k)\) have positive determinants, for all \((x,{{\textbf{u}}}) \in {{\mathcal {O}}}\), \(1 \le i \le k\). We recall that the k-principal minors of a matrix \((m_{ij})_{1 \le i,j \le k}\) are the submatrices \((m_{ij})_{1 \le i,j \le k'}\) with \(1 \le k' \le k\).

Theorem 5.1

Suppose \(f_1,\dots ,f_k\) satisfy (A0)–(A4), and \({{\textbf{u}}} = (u_1,\dots ,u_k)\) is a classical solution of (5.1). Then there exists a point \(y_0 \in {\mathbb {R}}\) such that the functions \(u_i\) are radially symmetric with respect to the origin \(y_0\), that is \(u_i(x) = u_i(\left|x - y_0\right|)\), \(i=1,\dots ,k\). Moreover,

$$\begin{aligned} \frac{d u_i}{d r} < 0\quad \text { for all }\ r = \left|x - y_0\right| > 0. \end{aligned}$$

For \(\lambda \in {\mathbb {R}}\), set \(\Sigma _\lambda := (\lambda ,\infty )\) and for \(x \in \Sigma _\lambda \), we define

$$\begin{aligned} x^\lambda&:= 2 \lambda - x,\\ U_i^\lambda (x)&:= u_i(x^\lambda ) - u_i(x) = u_i(2 \lambda - x) - u_i(x). \end{aligned}$$

Outline of the proof of Theorem 5.1

We define

$$\begin{aligned} \Lambda := \inf \{\lambda > 0 \mid U_i^\mu \ge 0\ \text { in }\ \Sigma _\mu \ \text { for }\ i=1,\dots ,k,\ \text { and all }\ \mu \ge \lambda \}. \end{aligned}$$

Since \(u_i(x) \rightarrow 0\) as \(\left|x\right| \rightarrow \infty \), there exists \(R_0 \ge R_1\) such that \(u_i(x) < \varepsilon /\sqrt{k}\) if \(\left|x\right| \ge R_0\) for all \(i=1,\dots ,k\). We take \(\lambda ^* > R_0\), for which

$$\begin{aligned} \max _{\begin{array}{c} 1 \le i \le k\\ x \in [2 \lambda - R_0, 2 \lambda + R_0] \end{array}} u_i(x) < \min _{\begin{array}{c} 1 \le i \le k\\ x \in [- R_0, R_0] \end{array}} u_i(x), \end{aligned}$$

for all \(\lambda > \lambda ^*\). Hence \(U_i^\lambda > 0\) in \([2 \lambda - R_0, 2 \lambda + R_0] \subset \Sigma _\lambda \) for all \(\lambda > \lambda ^*\). We notice that the functions \(U_i^\lambda \) satisfy the following system

$$\begin{aligned} (U_i^\lambda )'' + \frac{\partial f_i}{\partial x}(\mathbf {\eta }) (\left|x^\lambda \right| - x) + \sum _{j=1}^k \frac{\partial f_i}{\partial u_j}(x,\xi _{i1},\dots ,\xi _{ik}) U_j^\lambda = 0,\quad i = 1,\dots ,k, \end{aligned}$$

where \(\mathbf {\eta } = \mathbf {\eta }(x,\lambda ) \in (0,\infty )^{k+1}\) and

$$\begin{aligned} \xi _{ij} = \xi _{ij}(x,\lambda ) \in (\min \{u_j(x),u_j(x^\lambda )\},\max \{u_j(x),u_j(x^\lambda )\}). \end{aligned}$$

Since \(\left|x^\lambda \right| < x\) for \(x \in \Sigma _\lambda \), we obtain from (A1) the following systems of inequality for \(U_i^\lambda \)

$$\begin{aligned} (U_i^\lambda )'' + \sum _{j=1}^k \frac{\partial f_i}{\partial u_j}(x,\xi _{i1},\dots ,\xi _{ik}) U_j^\lambda \le 0,\quad i = 1,\dots ,k. \end{aligned}$$
(5.2)

We want to show that \(U_i^\lambda \ge 0\) in \(\Sigma _\lambda \), for all \(\lambda > \lambda ^*\). We argue by contradiction. Suppose there exist \(\lambda > \lambda ^*\) and \(i_0 \in \{1,\dots ,k\}\) such that \(\inf _{\Sigma _\lambda } U_{i_0}^\lambda < 0\). We set \(J = \{j \mid U_j^\lambda \ge 0\ \text { in }\ \Sigma _\lambda \}\), and \(I = \{1,\dots ,k\} {\setminus } J\) (note that \(i_0 \in I\)).

Since all k-principal minors of \(- A(x,{{\textbf{u}}})\) have positive determinants, for all \((x,{{\textbf{u}}}) \in {{\mathcal {O}}}\), we do not need to introduce a function g as in [5]. Note the following lemma stated as Lemma 2.2 in [13].

Lemma 5.2

Let \(M = (m_{ij})_{1 \le i,j \le k}\) be a matrix such that \(m_{ij} \le 0\) for \(i \ne j\). Assume all k-principal minors of M have positive determinants. Then

  1. (i)

    all minors of M obtained by dropping lines and columns of the same order have positive determinants.

  2. (ii)

    if \(M_{ij}\) is the minor of M obtained by dropping the i th line and j th column we have \((-1)^{i+j} \det M_{ij} \ge 0\).

Hence we may assume \(I = \{1,\dots ,p\}\). Since \(U_j^\lambda \ge 0\) in \(\Sigma _\lambda \) for \(j \in J\), from (A2) and (5.2), we have

$$\begin{aligned} (U_i^\lambda )'' + \sum _{j=1}^p \frac{\partial f_i}{\partial u_j}(x,\xi _{i1},\dots ,\xi _{ik}) U_j^\lambda \le 0,\quad i = 1,\dots ,p. \end{aligned}$$

Since \(\inf _{\Sigma _\lambda } U_i^\lambda < 0\) for all \(i=1,\dots ,p\), \(U_i^\lambda > 0\) in \([2 \lambda - R_0, 2 \lambda + R_0]\), \(U_i^\lambda (\lambda ) = 0\) and \(U_i^\lambda (x) \rightarrow 0\) as \(\left|x\right| \rightarrow \infty \), there exist \(x_1,\dots ,x_p \in \Sigma _\lambda {\setminus } [2 \lambda - R_0, 2 \lambda + R_0]\) such that \(U_i^\lambda (x_i) = \min _{\Sigma _\lambda } U_i^\lambda < 0\). Then \((U_i^\lambda )''(x_i) \ge 0\) and \((U_i^\lambda )'(x_i) = 0\). Substituting \(x=x_i\) at i-th equation and using the fact that \(U_j^\lambda (x_j) \le U_j^\lambda (x_i)\), we have

$$\begin{aligned} \sum _{j=1}^p \frac{\partial f_i}{\partial u_j}(x_i,\xi _{i1},\dots ,\xi _{ik}) U_j^\lambda (x_j) \le 0,\quad i = 1,\dots ,p. \end{aligned}$$
(5.3)

(5.3) can be written as

$$\begin{aligned} M {{\textbf{U}}} = Y, \end{aligned}$$

where

$$\begin{aligned}&{{\textbf{U}}} := (U_1^\lambda (x_1),\dots ,U_p^\lambda (x_p)),\quad M = (m_{ij})_{1 \le i,j \le p},\quad Y = (y_1,\dots ,y_p),\\&y_i \ge 0,\quad m_{i,j} := - \frac{\partial f_i}{\partial u_j}(x_i,\xi _{i1},\dots ,\xi _{ik}) \end{aligned}$$

Since \(x_i \not \in [2 \lambda - R_0, 2 \lambda + R_0]\), then \(x_i^\lambda \not \in [-R_0, R_0]\), that is, \(\left|x_i^\lambda \right| > R_0\). Noting that \(x_i > R_0\), we have \(u_j(x_i),u_j(x_i^\lambda ) < \varepsilon /\sqrt{k}\). Thus we have \(\xi _{i1}(x_i,\lambda )^2 + \dots + \xi _{ik}(x_i,\lambda )^2 < \varepsilon ^2\). From (A2) and (A4), we have \(m_{ij} \le 0\) for \(i \ne j\), and all p-principal minors of M have positive determinants. Since \(\det M > 0\), it follows that \({{\textbf{U}}} = M^{-1} Y\). From Lemma 5.2, \(U_i^\lambda (x_i) \ge 0\) for all \(i=1,\dots ,p\). This contradicts the fact that \(U_i(x_i) < 0\). Hence \(\Lambda < \infty \).

The rest of the proof of Theorem 5.1 can be showed by the same argument as in [5]. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osada, Y. A singular perturbation problem for a nonlinear Schrödinger system with three wave interaction. Nonlinear Differ. Equ. Appl. 31, 7 (2024). https://doi.org/10.1007/s00030-023-00901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00901-8

Keywords

Mathematics Subject Classification

Navigation