Skip to main content
Log in

Further investigation of stochastic nonlinear Hilfer-fractional integro-differential inclusions using almost sectorial operators

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

The purpose of this work is to develop a new model of fractional operators called Hilfer-fractional random nonlinear integro-differential equations. In this paradigm, a further discussion is encouraged under almost sectorial operators. The results are supported by fractional calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multi-valued mappings. In addition, a mild solution to the model under consideration is presented. Ultimately, an example is provided to support our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

FC:

Fractional calculus

FP:

Fixed point

RL:

Riemann–Liouville

SDI:

Stochastic differential inclusion

CFD:

Caputo fractional derivative

HFD:

Hilfer fractional derivative

SO:

Sectorial operator

HS:

Hilbert space

NBCC:

Non-empty, bounded, closed and convex

BS:

Banach space

a.e.:

Almost everywhere

USC:

Upper semicontinuous

LDCT:

Lebesgue’s dominated convergent theorem

SAT:

Stochastic analysis theory.

References

  1. Arnold, L.: Stochastic Differential Equations. Wiley, New York (1974)

    Google Scholar 

  2. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    MathSciNet  Google Scholar 

  3. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  4. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations, Mathematics and Its Application. Kluwer, Dordrecht (1995)

    Google Scholar 

  5. Asari, M., Hashemizadeh, E., Khodabin, M., Maleknejad, M.: Numerical solution of nonlinear stochastic integral equations by stochastic operational matrix based on Bernstein polynomials. Bull. Math. Soc. Sci. Math. Roum. 57(1), 3–12 (2014)

    MathSciNet  Google Scholar 

  6. Kolmogorov, A.: Wienersche Spiralen und einige andere interessante kurven im Hilbertschen raum. C. R. (Doklady). Acad. Sci. URSS (N. S.) 26, 115–118 (1940)

    MathSciNet  Google Scholar 

  7. Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    MathSciNet  Google Scholar 

  8. Nualart, D.: Stochastic calculus with respect to fractional Brownian motion. Ann. Faculté Sci. Toulouse Math. S érie 15(1), 63–78 (2006)

    MathSciNet  Google Scholar 

  9. Pipiras, V., Taqqu, M.S.: Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7(6), 873–897 (2001)

    MathSciNet  Google Scholar 

  10. Rogers, L.C.G.: Arbitrage from fractional Brownian motion. Math. Finance 7, 95–105 (1997)

    MathSciNet  Google Scholar 

  11. Rostek, S., Schöbel, R.: A note on the use of fractional Brownian motion for financial modeling. Econ. Model. 30, 30–35 (2013)

    Google Scholar 

  12. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  13. Du, J., Jiang, W., Niazi, A.U.K.: Approximate controllability of impulsive Hilfer fractional differential inclusions. J. Nonlinear Sci. Appl. 10(2), 595–611 (2017)

    MathSciNet  Google Scholar 

  14. Vikerpuur, M.: Two collocation type methods for fractional differential equations with non-local boundary conditions. Math. Model. Anal. 22(5), 654–670 (2017)

    MathSciNet  Google Scholar 

  15. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2), 16 (2018)

    Google Scholar 

  16. Cardone, A., Conte, D., Paternoster, B.: Stability of two-step spline collocation methods for initial value problems for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 115, 106726 (2022)

    MathSciNet  Google Scholar 

  17. Soots, H.B., Lätt, K., Pedas, A.: Collocation based approximations for a class of fractional boundary value problems. Math. Model. Anal. 28(2), 218–236 (2023)

    MathSciNet  Google Scholar 

  18. Guo, Y., Shu, X.B., Li, Y., Xu, F.: The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order \( 1<\beta <2,\) Bound. Value Probl. 2019, 59 (2019)

    Google Scholar 

  19. Raja, M.M., Vijayakumar, V., Udhayakumar, R.: A new approach on the approximate controllability of fractional evolution inclusion of order \( 1<r<2\) with infinite delay. Chaos Solitons Fract. 141, 110343 (2020)

    MathSciNet  Google Scholar 

  20. Ma, X., Shu, X.B., Mao, J.: Existence of almost periodic solutions for fractional impulsive neutral stochastic differential equations with infinite delay. Stoch. Dyn. 20(1), 2050003 (2020)

    MathSciNet  Google Scholar 

  21. Sakthivel, R., Ren, Y., Debbouche, A., Mahmudov, N.I.: Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl. Anal. 95(11), 2361–2382 (2016)

    MathSciNet  Google Scholar 

  22. Balasubramaniam, P., Tamilalagan, P.: Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. Appl. Math. Comput. 256, 232–246 (2015)

    MathSciNet  Google Scholar 

  23. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control 24(5), 2378–2394 (2022)

    MathSciNet  Google Scholar 

  24. Wongsaijai, B., Charoensawan, P., Suebcharoen, T., Atiponrat, W.: Common fixed point theorems for auxiliary functions with applications in fractional differential equation. Adv. Differ. Equ. 2021, 503 (2021)

    MathSciNet  Google Scholar 

  25. Uddin, I., Garodia, C., Abdeljawad, T., Mlaiki, N.: Convergence analysis of a novel iteration process with application to a fractional differential equation. Adv. Contin. Discr. Models 2022, 16 (2022)

    MathSciNet  Google Scholar 

  26. Dhayal, R., Quanxin, Z.: Stability and controllability results of \(\psi \)-Hilfer fractional integro-differential systems under the influence of impulses. Chaos Solitons Frac. 168, 113105 (2023)

    MathSciNet  Google Scholar 

  27. Fenizri, F., Guezane-Lakoud, A., Khaldi, R.: Stability of solutions to fractional differential equations with time-delays. Proyecc. J. Math. 42(2), 261–272 (2023)

    MathSciNet  Google Scholar 

  28. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham (2017)

    Google Scholar 

  29. Ahmad, B., Garout, D., Ntouyas, S.K., Alsaedi, A.: Caputo fractional differential inclusions of arbitrary order with non-local integro-multipoint boundary conditions. Miskolc Math. Notes 20(2), 683–699 (2019)

    MathSciNet  Google Scholar 

  30. Harrat, A., Nieto, J.J., Debbouche, A.: Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke sub-differential. J. Comput. Appl. Math. 344, 725–737 (2018)

    MathSciNet  Google Scholar 

  31. Yang, M., Wang, Q.R.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40(4), 1126–1138 (2017)

    MathSciNet  Google Scholar 

  32. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  Google Scholar 

  33. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., Khan, A.: Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Contin. Discrete Models 2020, 615 (2020)

    MathSciNet  Google Scholar 

  34. Jaiswal, A., Bahuguna, D.: Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst. 31(2), 301–317 (2020)

    MathSciNet  Google Scholar 

  35. Karthikeyan, K., Debbouche, A., Torres, D.F.M.: Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 5(1), 22 (2021)

    Google Scholar 

  36. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nissar, K.S.: A note on approaximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Meth. Appl. Sci. 44(6), 4428–4447 (2021)

    Google Scholar 

  37. Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12(6), 3642–3653 (2011)

    MathSciNet  Google Scholar 

  38. Humaira, H.A., Hammad, M., De la Sen Sarwar, M.: Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces. Adv. Differ. Equ. 2021, 242 (2021)

    MathSciNet  Google Scholar 

  39. Hammad, H.A., Zayed, M.: Solving systems of coupled nonlinear Atangana–Baleanu-type fractional differential equations. Bound. Value Probl. 2022, 101 (2022)

    MathSciNet  Google Scholar 

  40. Hammad, H.A., De la Sen, M.: Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales. Fractal Fract. 7, 92 (2023)

    Google Scholar 

  41. Li, F.: Mild solutions for abstract differential equations with almost sectorial operators and infinite delay. Adv. Differ. Equ. 2013, 327 (2013)

    MathSciNet  Google Scholar 

  42. Periago, F., Straub, B.: A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2, 41–68 (2002)

    MathSciNet  Google Scholar 

  43. Bose, C.S.V., Udhayakumar, R.: Existence of mild solutions for Hilfer fractional neutral integro-differential inclusions via almost sectorial operators. Fractal Fract. 6, 532 (2022)

    Google Scholar 

  44. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252(1), 202–235 (2012)

    MathSciNet  Google Scholar 

  45. Zhang, L., Zhou, Y.: Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 257, 145–157 (2014)

    MathSciNet  Google Scholar 

  46. Chang, Y.K., Chalishajar, D.N.: Controllability of mixed Volterra–Fredholm-type integrodifferential inclusions in Banach spaces. J. Franklin Inst. 345(5), 499–507 (2012)

    Google Scholar 

  47. Sivasankar, S., Udhayakumar, R.: New outcomes regarding the existence of Hilfer fractional stochastic differential systems via almost sectorial operators. Fractal Fract. 6, 522 (2022)

    Google Scholar 

  48. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Google Scholar 

  49. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Google Scholar 

  50. Zhou, M., Li, C., Zhou, Y.: Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms 11(4), 144 (2022)

    Google Scholar 

  51. Lasota, A., Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 13, 781–786 (1965)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassen Aydi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, H.A., Aydi, H. & Kattan, D.A. Further investigation of stochastic nonlinear Hilfer-fractional integro-differential inclusions using almost sectorial operators. J. Pseudo-Differ. Oper. Appl. 15, 5 (2024). https://doi.org/10.1007/s11868-023-00577-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-023-00577-9

Keywords

Mathematics Subject Classification

Navigation