Skip to main content
Log in

Physical Properties of the Ternary System Toluene + n-Hexane + Cyclohexane at 298.15 K: Experimental and Modeling Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work reports experimental densities ρ, sound speeds u, and refractive indices n for the ternary system (toluene + n-hexane + cyclohexane) and related binary subsystems at 298.15 K and ambient pressure. Experimental data were used to derive excess molar volumes (\({V}_{m}^{E}\)), excess isentropic compressibilities (\({\kappa }_{S}^{E}\)), and refractive index deviations (Δn). Redlich–Kister and Cibulka's equations correlated the binary and ternary excess and deviation data, respectively, with standard deviations below the estimated uncertainties of the corresponding properties. The excess and deviation properties helped probe the interactions between mixture components. Furthermore, the Perturbed Chain Statistical Associating Fluid Theory Equation of State modeled the density of binary and ternary mixtures. Schaaff’s collision factor theory and Nomoto’s relation were compared for their capability to predict the sound speed of the studied mixtures. Mixing rules by Lorentz-Lorenz, Gladstone-Dale, Laplace, and Eykman modeled the mixtures' refractive indices. The average absolute percentage deviation between experimental and calculated values measured the models' predicting capabilities. The modeled densities are reasonably concordant with experimental data with deviations of 0.25%, 0.32%, 0.74%, and 0.31% for the binary n-hexane + cyclohexane, toluene + cyclohexane, and toluene + n-hexane, and ternary toluene + n-hexane + cyclohexane mixture, respectively. Nomoto’s relation was better for predicting binary (overall deviation of 0.46%) and ternary (deviation of 0.62%) sound speeds. Lorentz–Lorenz mixing rule was the best option for predicting binary (overall deviation of 0.08%) and ternary (deviation of 0.14%) refractive indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Díaz, B. Orge, G. Marino, J. Tojo, J. Chem. Thermodyn. 33, 1015 (2001)

    Article  Google Scholar 

  2. E. Mascato, L. Mosteiro, M.M. Piñeiro, J. García, T.P. Iglesias, J.L. Legido, J. Chem. Thermodyn. 33, 269 (2001)

    Article  Google Scholar 

  3. F. Aliaj, A. Zeqiraj, Phys. Chem. Liq. 61, 240 (2023)

    Article  Google Scholar 

  4. A. Hernández, A.Z. Zeqiraj, F.R. Aliaj, Int. J. Thermophys. 44, 102 (2023)

    Article  ADS  Google Scholar 

  5. A. Zeqiraj, A. Hernández, N. Syla, R. Raçi, F. Rr. Aliaj, J. Chem. Eng. Data (2023). https://doi.org/10.1021/acs.jced.3c00363

    Article  Google Scholar 

  6. T. Arbneshi, A. Qerimi, A. Zeqiraj, N. Syla, F. Rr. Aliaj, J. Chem. Eng. Data 67, 2098 (2022)

    Article  Google Scholar 

  7. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948)

    Article  Google Scholar 

  8. I. Cibulka, Collect. Czechoslov. Chem. Commun. 47, 1414 (1982)

    Article  Google Scholar 

  9. H. Iloukhani, M. Rezaei-Sameti, H.A. Zarei, Thermochim. Acta 438, 9 (2005)

    Article  Google Scholar 

  10. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001)

    Article  Google Scholar 

  11. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 41, 5510 (2002)

    Article  Google Scholar 

  12. W. Schaaffs, Acta Acust. United Acust. 33, 272 (1975)

    Google Scholar 

  13. O. Nomoto, J. Phys. Soc. Japan 13, 1528 (1958)

    Article  ADS  Google Scholar 

  14. B. Giner, C. Lafuente, A. Villares, M. Haro, M.C. López, J. Chem. Thermodyn. 39, 148 (2007)

    Article  Google Scholar 

  15. B. González, I. Domínguez, E.J. González, Á. Domínguez, J. Chem. Eng. Data 55, 1003 (2010)

    Article  Google Scholar 

  16. L. Morávková, Z. Wagner, J. Linek, J. Chem. Thermodyn. 41, 591 (2009)

    Article  Google Scholar 

  17. A. Arimoto, H. Ogawa, S. Murakami, Thermochim. Acta 63, 191 (1990)

    Article  Google Scholar 

  18. N. Calvar, B. González, E. Gómez, J. Canosa, J. Chem. Eng. Data 54, 1334 (2009)

    Article  Google Scholar 

  19. L. Gama, J. Tojo, J. Chem. Eng. Data 37, 20 (1992)

    Article  Google Scholar 

  20. K. Tamura, S. Murakami, S. Doi, J. Chem. Thermodyn. 17, 325 (1985)

    Article  Google Scholar 

  21. S. Freire, L. Segade, O. Cabeza, E. Jiménez, J. Chem. Thermodyn. 39, 621 (2007)

    Article  Google Scholar 

  22. Á. Piñeiro, P. Brocos, A. Amigo, M. Pintos, R. Bravo, Phys. Chem. Liq. 38, 251 (2000)

    Article  Google Scholar 

  23. A. Rodríguez, J. Canosa, J. Tojo, J. Chem. Eng. Data 44, 666 (1999)

    Article  Google Scholar 

  24. G.P. Dubey, M. Sharma, N. Dubey, J. Chem. Thermodyn. 40, 309 (2008)

    Article  Google Scholar 

  25. M. Basu, T. Samanta, D. Das, J. Chem. Thermodyn. 57, 335 (2013)

    Article  Google Scholar 

  26. H. Iloukhani, M. Rezaei-Sameti, J. Chem. Thermodyn. 37, 1151 (2005)

    Article  Google Scholar 

  27. J. Balán, L. Morávková, J. Linek, Chem. Pap. 61, 497 (2007)

    Article  Google Scholar 

  28. M. Dominguez, J. Pardo, J. Santafe, F.M. Royo, J.S. Urieta, Fluid Phase Equilib. 118, 227 (1996)

    Article  Google Scholar 

  29. K. Ridgway, P.A. Butler, J. Chem. Eng. Data 12, 509 (1967)

    Article  Google Scholar 

  30. B. N. Taylor, C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (NIST Technical Note 1297, 1994 Edition). https://doi.org/10.6028/NIST.TN.1297

  31. F. Aliaj, N. Syla, A. Kurtishaj, N. Elezaj, Z. Tolaj, T. Arbneshi, A. Zeqiraj, Int. J. Thermophys. 41, 49 (2020)

    Article  ADS  Google Scholar 

  32. D. Belhadj, A. Negadi, A. Hernández, I. Mokbel, I. Bahadur, L. Negadi, J. Chem. Thermodyn. 106820 (2022)

  33. N. L. Benkelfat-Seladji, F. Ouaar, A. Hernández, N. Muñoz-Rujas, I. Bahadur, N. Chiali-Baba Ahmed, E. Montero, L. Negadi, J. Chem. Eng. Data 66, 3397 (2021)

  34. N. L. Benkelfat-Seladji, F. Ouaar, A. Hernández, I. Bahadur, N. Muñoz-Rujas, S. K. Singh, E. Montero, N. Chiali-Baba Ahmed, L. Negadi, J. Chem. Thermodyn. 170, 106762 (2022)

  35. J.D. Pandey, A.K. Shukla, S. Gupta, S. Pandey, Fluid Phase Equilib. 103, 285 (1995)

    Article  Google Scholar 

  36. K. Malakondaiah, K. Subbarangaiah, S.V. Subrahmanyam, Phys. Chem. Liq. 23, 49 (1991)

    Article  Google Scholar 

  37. B. González, E.J. González, I. Domínguez, A. Domínguez, Phys. Chem. Liq. 48, 514 (2010)

    Article  Google Scholar 

  38. H. Iloukhani, M. Rezaei-Sameti, J. Chem. Eng. Data 50, 1928 (2005)

    Article  Google Scholar 

  39. T.M. Aminabhavi, V.B. Patil, M.I. Aralaguppi, H.T.S. Phayde, J. Chem. Eng. Data 41, 521 (1996)

    Article  Google Scholar 

  40. S.A. Beg, N.M. Tukur, D.K. Al-Harbi, Fluid Phase Equilib. 113, 173 (1995)

    Article  Google Scholar 

  41. N. Tripathi, Int. J. Thermophys. 26, 693 (2005)

    Article  ADS  Google Scholar 

  42. J.R. Goates, J.B. Ott, R.B. Grigg, J. Chem. Thermodyn. 11, 497 (1979)

    Article  Google Scholar 

  43. G.C. Benson, O. Kiyohara, J. Chem. Thermodyn. 11, 1061 (1979)

    Article  Google Scholar 

  44. E.S. Domalski, E.D. Hearing, J. Phys. Chem. Ref. Data 25, 1–525 (1996)

    Article  ADS  Google Scholar 

  45. E. Mascato, A. Mariano, M. M. Piñeiro, J. L. Legido, M. I. Paz Andrade, J. Chem. Thermodyn. 39, 1247 (2007)

  46. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw-Hill, New York, 2003), pp.194–217

    Google Scholar 

  47. J.B. Ott, K.N. Marsh, R.H. Stokes, J. Chem. Thermodyn. 12, 1139 (1980)

    Article  Google Scholar 

  48. M. Caceres Alonso, J. L. Poveda Vilches, R. G. Sanchez-Pajares, J. Nuñez Delgado, J. Chem. Thermodyn. 15, 913 (1983)

  49. S.L. Oswal, M.M. Maisuria, R.L. Gardas, J. Mol. Liq. 109, 155 (2004)

    Article  Google Scholar 

  50. G. Douhéret, M.I. Davis, Chem. Soc. Rev. 22, 43 (1993)

    Article  Google Scholar 

  51. M. Costas, D. Patterson, Thermochim. Acta 120, 161 (1987)

    Article  Google Scholar 

  52. K.V.N.S. Reddy, P.S. Rao, A. Krishnaiah, J. Mol. Liq. 135, 14 (2007)

    Article  Google Scholar 

  53. E. Mascato, L. Mosteiro, M.M. Piñeiro, J. García, T.P. Iglesias, J.L. Legido, J. Chem. Thermodyn. 33, 1081 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Prof. Dr. Sevdije Govori, Chief of the Department of Chemistry at the University of Prishtina, for her generous support in providing the necessary materials for conducting this research.

Funding

No funds were used to support the research of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript has been collaboratively authored by all contributors, and the final version of the manuscript has been approved by all authors.

Corresponding author

Correspondence to Tahir Arbneshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliaj, F., Hernández, A., Zeqiraj, A. et al. Physical Properties of the Ternary System Toluene + n-Hexane + Cyclohexane at 298.15 K: Experimental and Modeling Study. Int J Thermophys 45, 3 (2024). https://doi.org/10.1007/s10765-023-03300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03300-4

Keywords

Navigation