Skip to main content

Advertisement

Log in

DAE-Mask: a novel deep-learning-based automatic detection model for in-field wheat diseases

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Wheat diseases seriously restrict the safety of wheat production and food quality. For farmers and agriculture technicians, diagnosing the disease with the naked eye is not suitable for modern precision agriculture. Deep learning has shown promise in crop disease diagnosis, but accuracy and speed remain a significant challenge in natural field conditions. In this study, a novel DAE-Mask method based on diversification-augmented features and edge features was proposed for intelligent wheat disease detection. DAE-Mask used Densely Connected Convolutional Networks (DenseNet) for preliminary feature extraction, and a backbone feature extraction network combining Feature Pyramid Network (FPN) and attention mechanism was designed to extract diversification-augmented features. To accelerate DAE-Mask, an Edge Agreement Head module based on Sobel filters was designed to compare edge features during training, which improved the model’s mask generation efficiency. We also built a multi-scene wheat disease dataset, MSWDD2022, containing images of wheat stripe rust, wheat powdery mildew, wheat yellow dwarf, and wheat scab. Our model achieved detection speed of 0.08s/pic. On MSWDD2022, our model with mean average precision (mAP) of 96.02% outperformed YOLOv5s, YOLOv8x, SSD, EfficientDet, CenterNet, and RefineDet by 7.79, 1.32, 3.54, 4.79, 9.77, and 5.29 percentage points, respectively. On the public dataset PlantDoc, our model with mAP of 57.68% outperformed YOLOv5s, YOLOv8x, SSD, EfficientDet, CenterNet, and RefineDet by 27.76, 6.48, 14.43, 11.79, 19.40, and 13.40 percentage points, respectively. Finally, the DAE-Mask was deployed on WeChat Mini Program to realize the real-time detection of in-field wheat diseases. The mAP reached 92.78%, and the average return delay of each image was 1.43s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The relevant image data for this study has been openly shared and can be accessed on the Github platform (https://github.com/NWAFU-YcZhang/Dataset-of-DAE-Mask). We encourage fellow researchers to utilize this data to facilitate academic discourse and collaboration.

References

  • Abrahamyan, L., Ziatchin, V., Chen, Y., & Deligiannis, N. (2021). Bias loss for mobile neural networks. 2021 IEEE/CVF international conference on computer vision (ICCV) (pp. 6536–6546).

  • Ahmad, J., Farman, H., & Jan, Z. (2019). Deep learning methods and applications. In M. Khan, B. Jan, & H. Farman (Eds.), Deep learning: Convergence to big data analytics (pp. 31–42). Springer.

    Chapter  Google Scholar 

  • Bao, W., Yang, X., Liang, D., Hu, G., & Yang, X. (2021). Lightweight convolutional neural network model for field wheat ear disease identification. Computers and Electronics in Agriculture, 189, 106367. https://doi.org/10.1016/j.compag.2021.106367

    Article  Google Scholar 

  • Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., & Yang, S. (2017). AdaNet: Adaptive structural learning of artificial neural networks. In 34th inter national conference on machine learning, ICML 2017, August 6, 2017–August 11, 2017 (Vol. 2, pp. 1452–1466). International Machine Learning Society (IMLS).

  • Deng, L. (2014). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3), 197–387. https://doi.org/10.1561/2000000039

    Article  MathSciNet  Google Scholar 

  • Dhanalakshmi, R., & K, B., Sinha, B. B., Gopalakrishnan, R. (2023). Tomato leaf disease identification by modified inception based sequential convolution neural networks. The Imaging Science Journal. https://doi.org/10.1080/13682199.2023.2183318

  • Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Key-point triplets for object detection. In 2019 IEEE/CVF international conference on computer vision (ICCV) (pp. 6568–6577).

  • Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009

    Article  Google Scholar 

  • Gehlot, M., & Gandhi, G. C. (2023). “EffiNet-TS’’: A deep interpretable architecture using EfficientNet for plant disease detection and visualization. Journal of Plant Diseases and Protection, 130(2), 413–430. https://doi.org/10.1007/s41348-023-00707-x

    Article  Google Scholar 

  • Genaev, M. A., Skolotneva, E. S., Gultyaeva, E. I., Orlova, E. A., Bechtold, N. P., & Afonnikov, D. A. (2021). Image-based wheat fungi diseases identification by deep learning. Plants, 10(8), 1500. https://doi.org/10.3390/plants10081500

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan, R. I., Yusuf, S. M., & Alzubaidi, L. (2020). Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion. Plants, 9(10), 1302. https://doi.org/10.3390/plants9101302

    Article  PubMed  PubMed Central  Google Scholar 

  • He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask r-cnn. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386–397. https://doi.org/10.1109/TPAMI.2018.2844175

    Article  PubMed  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778).

  • Hu, X., Hu, X., Ma, L., Huang, C., Zhou, Y., & Xu, X. (2021). Advances in monitoring and early warning of crop diseases. Journal of Plant Protection, 49(1), 298–315.

    Google Scholar 

  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.Q. (2017). Densely connected convolutional networks. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2261–2269).

  • Hughes, D., & Salathé, M., et al. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv: 1511.08060.

  • Jadhav, V. D., & Patil, L. V. (2023). A study on medical image data augmentation using learning techniques. In S. Fong, N. Dey, & A. Joshi (Eds.), ICT analysis and applications (pp. 23–30). Springer.

    Chapter  Google Scholar 

  • Jocher, G., Ayush Chaurasia, Stoken, A., Borovec, J., NanoCode012, Yonghye Kwon, & Jain, M. (2022). ultralytics/yolov5: v7.0—YOLOv5 SOTA realtime instance segmentation. Zenodo. Retrieved August 8, 2023, from https://zenodo.org/record/3908559

  • Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by ultralytics. (Github: https://github.com/ultralytics/ultralytics).

  • Keceli, A. S., Kaya, A., Catal, C., & Tekinerdogan, B. (2022). Deep learning based multi-task prediction system for plant disease and species detection. Ecological Informatics, 69, 101679. https://doi.org/10.1016/j.ecoinf.2022.101679

    Article  Google Scholar 

  • Lee, S. H., Goëau, H., Bonnet, P., & Joly, A. (2020). New perspectives on plant disease characterization based on deep learning. Computers and Electronics in Agriculture, 170, 105220. https://doi.org/10.1016/j.compag.2020.105220

    Article  Google Scholar 

  • Liang, Z., Shao, J., Zhang, D., & Gao, L. (2018). Small object detection using deep feature pyramid networks. Lecture Notes in Computer ScienceIn R. Hong, W.-H. Cheng, T. Yamasaki, M. Wang, & C.-W. Ngo (Eds.), Advances in multimedia information processing—PCM 2018 (Vol. 11166, pp. 554–564). Springer.

    Chapter  Google Scholar 

  • Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 936–944). IEEE.

  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single shot MultiBox detector. B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer vision—ECCV 2016 , Lecture Notes in Computer Science (Vol. 9905, pp. 21–37).

  • Mahbub, R., Shafiq Anuva, S., Towhid Khan, I., & Islam, Z. (2022). A comparative analysis of efficient convolutional neural network based methods for plant disease classification. 2022 25th international conference on computer and information technology (ICCIT) (pp. 870–875). IEEE. Retrieved August 9, 2023, from https://ieeexplore.ieee.org/document/10056104/

  • Manavalan, R. (2020). Automatic identification of diseases in grains crops through computational approaches: A review. Computers and Electronics in Agriculture, 178, 105802. https://doi.org/10.1016/j.compag.2020.105802

    Article  Google Scholar 

  • Mehta, Y. R. (2014). Wheat diseases and their management. Springer.

    Book  Google Scholar 

  • Michels, M., Bonke, V., & Musshoff, O. (2020). Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, 21(6), 1209–1226. https://doi.org/10.1007/s11119-020-09715-5

    Article  Google Scholar 

  • Mohr, S., & Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816–1844. https://doi.org/10.1007/s11119-021-09814-x

    Article  Google Scholar 

  • Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2017). Pruning convolutional neural networks for resource efficient inference. International conference on learning representations. Retrieved from https://openreview.net/forum?id=SJGCiw5gl

  • Monteiro, A. L., de Freitas Souza, M. D., Lins, H. A., Teófilo, T. M. D. S., Barros Júnior, A. P., Silva, D. V., & Mendonça, V. (2021). A new alternative to determine weed control in agricultural systems based on artificial neural networks (ANNs). Field Crops Research, 263, 108075. https://doi.org/10.1016/j.fcr.2021.108075

    Article  Google Scholar 

  • Nazari, K., Ebadi, M. J., & Berahmand, K. (2022). Diagnosis of alternaria disease and leafminer pest on tomato leaves using image processing techniques. Journal of the Science of Food and Agriculture, 102(15), 6907–6920. https://doi.org/10.1002/jsfa.12052

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuizen, A. T., Tang, L., Hofstee, J. W., Müller, J., & van Henten, E. J. (2007). Colour based detection of volunteer potatoes as weeds in sugar beet fields using machine vision. Precision Agriculture, 8(6), 267–278. https://doi.org/10.1007/s11119-007-9044-y

    Article  Google Scholar 

  • Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48–62. https://doi.org/10.1016/j.neucom.2021.03.091

    Article  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLEOD, L. (1995). Fusarium ear blight (scab) in small grain cereals: A review. Plant Pathology, 44(2), 207–238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x

    Article  Google Scholar 

  • Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J., & Johannes, A. (2019). Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture, 161, 280–290. https://doi.org/10.1016/j.compag.2018.04.002

    Article  Google Scholar 

  • Ronald, A., F. (1922). On the interpretation of \(\chi ^{2}\) from contingency tables, and the calculation of p. Journal of the Royal Statistical Society, 85(1), 87–94. https://doi.org/10.1111/j.2397-2335.1922.tb00768.x

    Article  Google Scholar 

  • Saleem, M. H., Potgieter, J., & Arif, K. M. (2021). Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precision Agriculture, 22(6), 2053–2091. https://doi.org/10.1007/s11119-021-09806-x

    Article  Google Scholar 

  • Santos, A. D., de Lima Santos, I. C., Costa, J. G., Oumar, Z., Bueno, M. C., Mota Filho, T. M. M., & Zanuncio, J. C. (2022). Canopy defoliation by leaf-cutting ants in eucalyptus plantations inferred by unsupervised machine learning applied to remote sensing. Precision Agriculture, 23(6), 2253–2269. https://doi.org/10.1007/s11119-022-09919-x

    Article  Google Scholar 

  • Serrago, R. A., Carretero, R., Bancal, M. O., & Miralles, D. J. (2011). Grain weight response to foliar diseases control in wheat (Triticum aestivum L.). Field Crops Research, 120(3), 352–359. https://doi.org/10.1016/j.fcr.2010.11.004

    Article  Google Scholar 

  • Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., & Batra, N. (2020). Plant-Doc: A dataset for visual plant disease detection. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD (pp. 249–253). ACM.

  • Sobel, I., & Feldman, G. (1973). A \(3\times 3\) isotropic gradient operator for image processing. Pattern Classification and Scene Analysis 271–272.

  • Su, W.-H., Zhang, J., Yang, C., Page, R., Szinyei, T., Hirsch, C. D., & Steffenson, B. J. (2020). Automatic evaluation of wheat resistance to fusarium head blight using dual mask-RCNN deep learning frameworks in com puter vision. Remote Sensing, 13(1), 26. https://doi.org/10.3390/rs13010026

    Article  ADS  Google Scholar 

  • Sun, H., Xu, H., Liu, B., He, D., He, J., Zhang, H., & Geng, N. (2021). MEAN878 SSD: A novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks. Computers and Electronics in Agriculture, 189, 106379. https://doi.org/10.1016/j.compag.2021.106379

    Article  Google Scholar 

  • Sun, S., Yang, X., Lin, X., Sassenrath, G. F., & Li, K. (2018). Winter wheat yield gaps and patterns in china. Agronomy Journal, 110(1), 319–330. https://doi.org/10.2134/agronj2017.07.0417

    Article  Google Scholar 

  • Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 10778–10787).

  • Tang, Z., Zhou, Z., Xu, F., & Warkentin, M. (2022). Apps within apps: Predicting government WeChat mini-program adoption from trust-risk perspective and innovation diffusion theory. Information Technology & People, 35(3), 1170–1190. https://doi.org/10.1108/ITP-06-2020-0415

    Article  Google Scholar 

  • Thakur, P. S., Khanna, P., Sheorey, T., & Ojha, A. (2022). Trends in vision-based machine learning techniques for plant disease identification: A systematic review. Expert Systems with Applications, 208, 118117. https://doi.org/10.1016/j.eswa.2022.118117

    Article  Google Scholar 

  • Vaidya, S., Kavthekar, S., & Joshi, A. (2023). Leveraging YOLOv7 for plant disease detection. 2023 4th international conference on innovative trends in information technology (ICITIIT) (pp. 1–6). IEEE. Retrieved August 9, 2023, from https://ieeexplore.ieee.org/document/10068590/

  • Wan, A. M., Chen, X. M., & He, Z. H. (2007). Wheat stripe rust in China. Australian Journal of Agricultural Research, 58(6), 605. https://doi.org/10.1071/AR06142

    Article  Google Scholar 

  • Wang, D., & He, D. (2022). Fusion of mask RCNN and attention mechanism for instance segmentation of apples under complex background. Computers and Electronics in Agriculture, 196, 106864. https://doi.org/10.1016/j.compag.2022.106864

    Article  Google Scholar 

  • Woo, S., Park, J., Lee, J.-Y., & Kweon, I. S. (2018). CBAM: Convolutional block attention module. V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision—ECCV 2018. Lecture Notes in Computer Science (Vol. 11211, pp. 3–19). Springer.

  • Yang, K., Zhong, W., & Li, F. (2020). Leaf segmentation and classification with a complicated background using deep learning. Agronomy, 10(11), 1721. https://doi.org/10.3390/agronomy10111721

    Article  Google Scholar 

  • Yuan, L., Huang, Y., Loraamm, R. W., Nie, C., Wang, J., & Zhang, J. (2014). Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research, 156, 199–207. https://doi.org/10.1016/j.fcr.2013.11.012

    Article  Google Scholar 

  • Zhang, Q., Men, X., Hui, C., Ge, F., & Ouyang, F. (2022). Wheat yield losses from pests and pathogens in China. Agriculture, Ecosystems & Environment, 326, 107821. https://doi.org/10.1016/j.agee.2021.107821

    Article  Google Scholar 

  • Zhang, S., Wen, L., Bian, X., Lei, Z., & Li, S. Z. (2018). Single-shot refinement neural network for object detection. In 2018 IEEE/CVF conference on computer vision and pattern recognition (pp. 4203–4212).

  • Zhao, S., Liu, J., & Wu, S. (2022). Multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion faster r cnn. Computers and Electronics in Agriculture, 199, 107176. https://doi.org/10.1016/j.compag.2022.107176

    Article  Google Scholar 

  • Zhao, Y., Yang, Y., Xu, X., & Sun, C. (2023). Precision detection of crop diseases based on improved YOLOv5 model. Frontiers in Plant Science, 13, 1066835. https://doi.org/10.3389/fpls.2022.1066835

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, R. S., & Siems, J. N. (2019). Faster training of mask r- CNN by focusing on instance boundaries. Computer Vision and Image Understanding, 188, 102795. https://doi.org/10.1016/j.cviu.2019.102795

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to staff of Jingzhuang, Liangma, and Cao Xinzhuang Experimental Bases for their help with data collection. The authors would like to thank Pro. Meili Wang, all editors and anonymous reviewers for their constructive advice.

Funding

This study was supported by China Agriculture Research System of Wheat (CARS-03-37); Key Research and Development Program of Shaanxi Province (2023-YBNY-220); Major Science and Technology Project of Shaanxi Agricultural Collaborative Innovation and Promotion Alliance in 2022 (LMZD202203); Innovation Training Program for College Students in Shaanxi Province (S202110712436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11119_2023_10093_MOESM1_ESM.pdf

Supplementary file1 Supplementary Figure Fig. S1 Comparison of detection results using DAE-Mask, YOLOv5s, YOLOv8x, SSD, EfficientDet, CenterNet, and RefineDet models on PlantDoc. Figure S1 shows the test results of the above 7 models on public dataset PlantDoc. From the test effect, the performance of the DAE-Mask model is the best, which is consistent with the performance data in Table 6 (PDF 2507 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Zhang, Y., Wang, Z. et al. DAE-Mask: a novel deep-learning-based automatic detection model for in-field wheat diseases. Precision Agric 25, 785–810 (2024). https://doi.org/10.1007/s11119-023-10093-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10093-x

Keywords

Navigation