Skip to main content
Log in

The post-Newtonian motion around an oblate spheroid: the mixed orbital effects due to the Newtonian oblateness and the post-Newtonian mass monopole accelerations

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

When a test particle moves about an oblate spheroid, it is acted upon, among other things, by two standard perturbing accelerations. One, of Newtonian origin, is due to the quadrupole mass moment \(J_2\) of the orbited body. The other one, of order \({\mathcal {O}}\left( 1/c^2\right) \), is caused by the static, post-Newtonian field arising solely from the mass of the central object. Both of them concur to induce indirect, mixed orbital effects of order \({\mathcal {O}}\left( J_2/c^2\right) \). They are of the same order of magnitude of the direct ones induced by the post-Newtonian acceleration arising in presence of an oblate source, not treated here. We calculate these less known features of motion in their full generality in terms of the osculating Keplerian orbital elements. Subtleties pertaining the correct calculation of their mixed net precessions per orbit to the full order of \({\mathcal {O}}\left( J_2/c^2\right) \) are elucidated. The obtained results hold for arbitrary orbital geometries and for any orientation of the body’s spin axis \(\hat{\mathbf {{k}}}\) in space. The method presented is completely general, and can be extended to any pair of post-Keplerian accelerations entering the equations of motion of the satellite, irrespectively of their physical nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No new data were generated or analysed in support of this research.

References

  1. Bertotti, B., Farinella, P., Vokrouhlický, D.: Physics of the solar system. Kluwer, Dordrecht, Aug 2003. https://doi.org/10.1007/978-94-010-0233-2

  2. Bolton, S.J., Lunine, J., Stevenson, D., Connerney, J.E.P., Levin, S., Owen, T.C., Bagenal, F., Gautier, D., Ingersoll, A.P., Orton, G.S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S.K., Mokashi, P., Thorne, R., Thorpe, R.: The Juno Mission. Space Sci. Rev. 213(1–4), 5–37 (2017). https://doi.org/10.1007/s11214-017-0429-6

    Article  ADS  Google Scholar 

  3. Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger, Bristol (1991)

    Google Scholar 

  4. Capderou, M.: Satellites. Orbits and Missions. Springer-Verlag France, Paris, (2005). https://doi.org/10.1007/b139118

  5. Ciufolini, I., Paolozzi, A., Koenig, R., Pavlis, E.C., Ries, J., Matzner, R., Gurzadyan, V., Penrose, R., Sindoni, G., Paris, C.: Fundamental Physics and General Relativity with the LARES and LAGEOS satellites. Nucl. Phys. B Proc. Suppl. 243, 180–193 (2013). https://doi.org/10.1016/j.nuclphysbps.2013.09.005

    Article  ADS  Google Scholar 

  6. Debono, I., Smoot, G.F.: General relativity and cosmology: unsolved questions and future directions. Universe 2, 23 (2016). https://doi.org/10.3390/universe2040023

    Article  ADS  Google Scholar 

  7. Einstein, A.: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzber. Preuss. Akad. 47, 831–839 (1915)

    Google Scholar 

  8. Gurfil, P., Efroimsky, M.: Analysis of the PPN two-Body Problem using non-osculating orbital elements. Adv. Space Res. 69(1), 538–553 (2022). https://doi.org/10.1016/j.asr.2021.09.009

    Article  ADS  Google Scholar 

  9. Heimberger, J., Soffel, M., Ruder, H.: Relativistic effects in the motion of artificial satellites—The oblateness of the central body II. Celest. Mech. Dyn. Astr. 47(2), 205–217 (1989). https://doi.org/10.1007/BF00051205

    Article  ADS  MathSciNet  Google Scholar 

  10. Huang, C., Liu, L.: Analytical solutions to the four post-Newtonian effects in a near Earth satellite orbit. Celest. Mech. Dyn. Astr. 53(3), 293–307 (1992). https://doi.org/10.1007/BF00052615

    Article  ADS  Google Scholar 

  11. Iorio, L.: Post-Newtonian direct and mixed orbital effects due to the oblateness of the central body. Int. J. Mod. Phys. D 24(8), 1550067–59 (2015). https://doi.org/10.1142/S0218271815500674

    Article  ADS  MathSciNet  Google Scholar 

  12. Iorio, L.: Post-Keplerian corrections to the orbital periods of a two-body system and their measurability. Mon. Not. Roy. Astron. Soc. 460(3), 2445–2452 (2016). https://doi.org/10.1093/mnras/stw1155

    Article  ADS  Google Scholar 

  13. Iorio, L.: Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond. Astron J. 157(6), 220 (2019). https://doi.org/10.3847/1538-3881/ab19bf

    Article  ADS  Google Scholar 

  14. Iorio, L.: On the mean anomaly and the mean longitude in tests of post-Newtonian gravity. Eur. Phys. J. C 79(10), 816 (2019). https://doi.org/10.1140/epjc/s10052-019-7337-8

    Article  ADS  Google Scholar 

  15. Iorio, L.: Post-Newtonian orbital effects induced by the mass quadrupole and spin octupole moments of an axisymmetric body. arXiv e-prints, art. arXiv:2310.02834, (2023). https://doi.org/10.48550/arXiv.2310.02834

  16. King-Hele, D.G.: The effect of the earth’s oblateness on the orbit of a near satellite. Proc. R. Soc. A 247(1248), 49–72 (1958). https://doi.org/10.1098/rspa.1958.0169

    Article  ADS  MathSciNet  Google Scholar 

  17. Klioner, S.A., Kopeikin, S.M.: The post-keplerian orbital representations of the relativistic two-body problem. Astrophys. J. 427, 951 (1994). https://doi.org/10.1086/174201

    Article  ADS  Google Scholar 

  18. Kopeikin, S.M., Efroimsky, M., Kaplan, G.: Relativistic celestial mechanics of the solar System. Wiley-VCH, Weinheim, (2011). https://doi.org/10.1002/9783527634569

  19. Le Verrier, U.: Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète. Cr. Hebd. Acad. Sci., 49:379–383, (1859)

  20. Nobili, A.M., Will, C.M.: The real value of Mercury’s perihelion advance. Nature 320, 39–41 (1986). https://doi.org/10.1038/320039a0

    Article  ADS  Google Scholar 

  21. Pearlman, M., Arnold, D., Davis, M., Barlier, F., Biancale, R., Vasiliev, V., Ciufolini, I., Paolozzi, A., Pavlis, E.C., Sośnica, K., Bloßfeld, M.: Laser geodetic satellites: a high-accuracy scientific tool. J. Geod. 93(11), 2181–2194 (2019). https://doi.org/10.1007/s00190-019-01228-y

    Article  ADS  Google Scholar 

  22. Pitjeva, E.V., Pitjev, N.P.: Masses of the main asteroid belt and the kuiper belt from the motions of planets and spacecraft. Astron. Lett. 44(8–9), 554–566 (2018). https://doi.org/10.1134/S1063773718090050

    Article  ADS  Google Scholar 

  23. Poisson, E., Will, C.M.: Gravity. Cambridge University Press, Cambridge, (2014). https://doi.org/10.1017/CBO9781139507486

  24. Renzetti, G.: History of the attempts to measure orbital frame-dragging with artificial satellites. Centr. Eur. J. Phys. 11(5), 531–544 (2013). https://doi.org/10.2478/s11534-013-0189-1

    Article  ADS  Google Scholar 

  25. Soffel, M.H.: Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer, Heidelberg, (1989). https://doi.org/10.1007/978-3-642-73406-9

  26. Soffel, M.H., Han, W.-B.: Applied General Relativity. Astronomy and Astrophysics Library. Springer Nature Switzerland, Cham, (2019). https://doi.org/10.1007/978-3-030-19673-8

  27. Soffel, M.H., Wirrer, R., Schastok, J., Ruder, H., Schneider, M.: Relativistic effects in the motion of artificial satellites—The oblateness of the central body i. Celest. Mech. Dyn. Astr. 42(1–4), 81–89 (1987). https://doi.org/10.1007/BF01232949

    Article  ADS  MathSciNet  Google Scholar 

  28. Will, C.M.: Incorporating post-Newtonian effects in N-body dynamics. Phys. Rev. D 89(4), 044043 (2014). https://doi.org/10.1103/PhysRevD.89.044043

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Iorio.

Ethics declarations

Conflict of interest

I declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Coefficients of some orbital variations

Coefficients of some orbital variations

The coefficients \({\widehat{T}}_j,\,j=1,\,2,\,\dots 6\) entering Eqs. (39)–(43) and (55)–(60) in Sect. 2.2 are

$$\begin{aligned} {\widehat{T}}_1&:= 1, \end{aligned}$$
(A1)
$$\begin{aligned} {\widehat{T}}_2&:= \left[ \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{l}}}\right) ^2 + \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{m}}}\right) ^2\right] ,\end{aligned}$$
(A2)
$$\begin{aligned} {\widehat{T}}_3&:= \left[ \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{l}}}\right) ^2 - \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{m}}}\right) ^2\right] ,\end{aligned}$$
(A3)
$$\begin{aligned} {\widehat{T}}_4&:= \left[ \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{h}}}\right) \,\left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{l}}}\right) \right] ,\end{aligned}$$
(A4)
$$\begin{aligned} {\widehat{T}}_5&:= \left[ \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{h}}}\right) \,\left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{m}}}\right) \right] ,\end{aligned}$$
(A5)
$$\begin{aligned} {\widehat{T}}_6&:= \left[ \left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{l}}}\right) \,\left( \hat{\mathbf {{k}}}\mathbf \cdot \hat{\mathbf {{m}}}\right) \right] . \end{aligned}$$
(A6)

They depend on I and \(\Omega \), and on the polar angles in terms of which \({\hat{\textbf{k}}}\) is parameterized; see, e.g., Eqs. (83)–(86).

1.1 Coefficients of the instantaneous Newtonian shifts due to \(J_2\)

Here, we deal with the instantaneous Newtonian shifts induced by \(J_2\) calculated in Sect. 2.2. We display the explicit expressions of the coefficients \({\mathcal {A}}_1^{\left( J_2\right) },\ldots {\mathcal {P}}_6^{\left( J_2\right) }\) entering Eqs. (39)–(43), which are

$$\begin{aligned} {\mathcal {A}}_1^{\left( J_2\right) }&:= 4\,e\,\left[ -3\,\left( 4 + e^2\right) \,\cos f + e\,\left( -6\,\cos 2f - e\,\cos 3f\right) \right] -\left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.1)
$$\begin{aligned} {\mathcal {A}}_2^{\left( J_2\right) }&:= 6\,e\,\left[ 3\,\left( 4 + e^2\right) \,\cos f + e\,\left( 6\,\cos 2f + e\,\cos 3f\right) \right] - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.2)
$$\begin{aligned} {\mathcal {A}}_3^{\left( J_2\right) }&:= 3\,\left( e^3\,\cos \left( f - 2 \omega \right) + 6\,e\,\left\{ \left[ 2\,e\,+ \left( 4 + e^2\right) \,\cos f\right] \,\cos 2u + e\,\cos \left( 4f + 2\omega \right) \right\} \right. \nonumber \\&\quad + e^3\,\cos \left( 5 f + 2 \omega \right) - \nonumber \\&\left. - 16\,\sin f\,\sin \left( f + 2 \omega \right) \right) - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.3)
$$\begin{aligned} {\mathcal {A}}_4^{\left( J_2\right) }&:=0, \end{aligned}$$
(A.1.4)
$$\begin{aligned} {\mathcal {A}}_5^{\left( J_2\right) }&:=0, \end{aligned}$$
(A.1.5)
$$\begin{aligned} {\mathcal {A}}_6^{\left( J_2\right) }&:= 6\,\left( 16\,\cos \left( f + 2\omega \right) \,\sin f + e\,\left\{ -e^2\,\sin \left( f - 2\omega \right) + 6\,\left[ 2\,e\,+ \left( 4 + e^2\right) \,\cos f\right] \right. \right. \nonumber \\&\quad \,\sin 2u + \nonumber \\&\left. \left. + 6\,e\,\sin \left( 4f + 2\omega \right) + e^2\,\sin \left( 5 f + 2\omega \right) \right\} \right) - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.6)
$$\begin{aligned} {\mathcal {E}}_1^{\left( J_2\right) }&:= 4\,\left[ 3\,\left( 4 + e^2\right) \,\cos f + e\,\left( 6\,\cos 2f + e\,\cos 3f\right) \right] - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.7)
$$\begin{aligned} {\mathcal {E}}_2^{\left( J_2\right) }&:= -6\,\left[ 3\,\left( 4 + e^2\right) \,\cos f + e\,\left( 6\,\cos 2f + e\,\cos 3f\right) \right] - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.8)
$$\begin{aligned} {\mathcal {E}}_3^{\left( J_2\right) }&:= -4\,\left[ 3\,\cos \left( f + 2 \omega \right) + 7\,\cos \left( 3 f + 2 \omega \right) \right] + e \left\{ -e\,\left[ 3\,\cos \left( f - 2 \omega \right) \right. \right. \nonumber \\&\left. \left. + 33\,\cos \left( f + 2 \omega \right) + 17\,\cos \left( 3 f + 2 \omega \right) + 3\,\cos \left( 5 f + 2 \omega \right) \right] + 36\,\sin 2f\,\sin 2u \right. \nonumber \\&\left. + 120\,\sin f\,\sin \left( f + 2 \omega \right) \right\} - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.9)
$$\begin{aligned} {\mathcal {E}}_4^{\left( J_2\right) }&:= 0, \end{aligned}$$
(A.1.10)
$$\begin{aligned} {\mathcal {E}}_5^{\left( J_2\right) }&:= 0, \end{aligned}$$
(A.1.11)
$$\begin{aligned} {\mathcal {E}}_6^{\left( J_2\right) }&:= 6\,e^2\,\sin \left( f - 2 \omega \right) - 8\,\left[ 3\,\sin \left( f + 2 \omega \right) + 7\,\sin \left( 3 f + 2 \omega \right) \right] \nonumber \\&\quad - 2\,e\,\left\{ 24\,\left[ 3\,\cos f\,\cos 2u \right. \right. \nonumber \\&\left. + 5\,\cos \left( f + 2 \omega \right) \right] \,\sin f + e\,\left[ 33\,\sin \left( f + 2 \omega \right) \right. \nonumber \\&\left. \left. \quad + 17\,\sin \left( 3 f + 2 \omega \right) + 3\,\sin \left( 5 f + 2 \omega \right) \right] \right\} - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.12)
$$\begin{aligned} {\mathcal {I}}_1^{\left( J_2\right) }&:=0, \end{aligned}$$
(A.1.13)
$$\begin{aligned} {\mathcal {I}}_2^{\left( J_2\right) }&:=0, \end{aligned}$$
(A.1.14)
$$\begin{aligned} {\mathcal {I}}_3^{\left( J_2\right) }&:=0, \end{aligned}$$
(A.1.15)
$$\begin{aligned} {\mathcal {I}}_4^{\left( J_2\right) }&:= 6 f + 6\,e\,\sin f + 3\,\sin 2u + 3\,e\,\sin \left( f + 2 \omega \right) + e\,\sin \left( 3 f + 2 \omega \right) - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.16)
$$\begin{aligned} {\mathcal {I}}_5^{\left( J_2\right) }&:= -\left\{ 3\,\cos 2u + e\,\left[ 3\,\cos \left( f + 2 \omega \right) + \cos \left( 3 f + 2 \omega \right) \right] \right\} - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.17)
$$\begin{aligned} {\mathcal {I}}_6^{\left( J_2\right) }&:=0,\end{aligned}$$
(A.1.18)
$$\begin{aligned} {\mathcal {N}}_1^{\left( J_2\right) }&:=0,\end{aligned}$$
(A.1.19)
$$\begin{aligned} {\mathcal {N}}_2^{\left( J_2\right) }&:=0,\end{aligned}$$
(A.1.20)
$$\begin{aligned} {\mathcal {N}}_3^{\left( J_2\right) }&:=0,\end{aligned}$$
(A.1.21)
$$\begin{aligned} {\mathcal {N}}_4^{\left( J_2\right) }&:= - \left\{ 3\,\cos 2u + e\,\left[ 3\,\cos \left( f + 2 \omega \right) + \cos \left( 3 f + 2 \omega \right) \right] \right\} - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.22)
$$\begin{aligned} {\mathcal {N}}_5^{\left( J_2\right) }&:= 6 f + 6\,e\,\sin f - 3\,\sin 2u - e\,\left[ 3\,\sin \left( f + 2 \omega \right) + \sin \left( 3 f + 2 \omega \right) \right] - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.23)
$$\begin{aligned} {\mathcal {N}}_6^{\left( J_2\right) }&:=0,\end{aligned}$$
(A.1.24)
$$\begin{aligned} {\mathcal {P}}_1^{\left( J_2\right) }&:= 48\,e\,f + 8\,\left( 6 + 5\,e^2 + 6\,e\,\cos f + e^2\,\cos 2f\right) \,\sin f - \left[ f \rightarrow f_0\right] ,\end{aligned}$$
(A.1.25)
$$\begin{aligned} {\mathcal {P}}_2^{\left( J_2\right) }&:= 6\,\left[ -12\,e\,f - 2\,\left( 6 + 5\,e^2 + 6\,e\,\cos f + e^2\,\cos 2f\right) \,\sin f\right] - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.26)
$$\begin{aligned} {\mathcal {P}}_3^{\left( J_2\right) }&:= 4\,\left[ 3\,\sin \left( f + 2 \omega \right) - 7\,\sin \left( 3 f + 2 \omega \right) \right] \nonumber \\&\quad - e \left\{ 36\,\left[ 3\,\cos \left( f + 2 \omega \right) + \cos \left( 3 f + 2 \omega \right) \right] \,\sin f + \right. \nonumber \\&\left. + e\,\left[ 3\,\sin \left( f - 2 \omega \right) + 21\,\sin \left( f + 2 \omega \right) + 11\,\sin \left( 3 f + 2 \omega \right) + 3\,\sin \left( 5 f + 2 \omega \right) \right] \right\} \nonumber \\&\quad - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.27)
$$\begin{aligned} {\mathcal {P}}_4^{\left( J_2\right) }&:= -8\,e\,\left\{ 3\,\cos 2u + e\,\left[ 3\,\cos \left( f + 2 \omega \right) + \cos \left( 3 f + 2 \omega \right) \right] \right\} \cot I\nonumber \\&\quad - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.28)
$$\begin{aligned} {\mathcal {P}}_5^{\left( J_2\right) }&:= -8\,e\, \cot I \left\{ -6 f + 3\,\sin 2u + e\,\left[ -6\,\sin f + 3\,\sin \left( f + 2 \omega \right) + \sin \left( 3 f + 2 \omega \right) \right] \right\} \nonumber \\&\quad - \left[ f \rightarrow f_0\right] , \end{aligned}$$
(A.1.29)
$$\begin{aligned} {\mathcal {P}}_6^{\left( J_2\right) }&:= -6\,e^2\,\cos \left( f - 2 \omega \right) + 6 (-4 + 7\,e^2)\,\cos \left( f + 2 \omega \right) + 56\,\cos \left( 3 f + 2 \omega \right) \nonumber \\&\quad + 2\,e\,\left\{ 11\,e\,\cos \left( 3 f + 2 \omega \right) + \right. \nonumber \\&\left. + 3\,e\,\cos \left( 5 f + 2 \omega \right) - 36\,\sin f\,\left[ 3\,\sin \left( f + 2 \omega \right) + \sin \left( 3 f + 2 \omega \right) \right] \right\} - \left[ f \rightarrow f_0\right] . \end{aligned}$$
(A.1.30)

1.2 Coefficients of the total mixed shifts per orbit of order \(J_2/c^2\)

Here, the mixed averaged shifts per orbit of order \({\mathcal {O}}\left( J_2/c^2\right) \), calculated in Sect. 2.2, are treated. The explicit expressions of the coefficients \(\mathcal {{\overline{A}}}_1^{\left( J_2/c^2\right) },\ldots \mathcal {{\overline{H}}}_6^{\left( J_2/c^2\right) }\) entering Eqs. (55)–(60) are displayed below. They read

$$\begin{aligned} \mathcal {{\overline{A}}}_1^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.1)
$$\begin{aligned} \mathcal {{\overline{A}}}_2^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.2)
$$\begin{aligned} \mathcal {{\overline{A}}}_3^{\left( J_2/c^2\right) }&:= 8\,\left( 1 + e\,\cos f_0\right) ^3\,\cos 2\omega \,\sin 2f_0 \nonumber \\&\quad + \left\{ 4\,e\,\left( 3 + e^2\right) \,\cos f_0 + 4\,\left( 2 + 3\,e^2\right) \,\cos 2f_0 + e\,\left[ 3\,\left( 4 + e^2\right) \,\cos 3f_0 \right. \right. \nonumber \\&\left. \left. + e\,\left( 12 + e^2 + 6\,\cos 4f_0 + e\,\cos 5f_0\right) \right] \right\} \,\sin 2\omega , \end{aligned}$$
(A.2.3)
$$\begin{aligned} \mathcal {{\overline{A}}}_4^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.4)
$$\begin{aligned} \mathcal {{\overline{A}}}_5^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.5)
$$\begin{aligned} \mathcal {{\overline{A}}}_6^{\left( J_2/c^2\right) }&:= -2 \left\{ 4\,e\,\left( 3 + e^2\right) \,\cos f_0 + 4\,\left( 2 + 3\,e^2\right) \,\cos 2f_0\right. \nonumber \\&\quad \left. + e\,\left[ 3\,\left( 4 + e^2\right) \,\cos 3f_0 + e\,\left( 12 + e^2 + 6\,\cos 4f_0 + e\,\cos 5f_0\right) \right] \right\} \,\cos 2\omega + \nonumber \\&+ 16\,\left( 1 + e\,\cos f_0\right) ^3\,\sin 2f_0\,\sin 2\omega , \end{aligned}$$
(A.2.6)
$$\begin{aligned} \mathcal {{\overline{E}}}_1^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.7)
$$\begin{aligned} \mathcal {{\overline{E}}}_2^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.8)
$$\begin{aligned} \mathcal {{\overline{E}}}_3^{\left( J_2/c^2\right) }&:= - \left\{ 4\,\left[ 3\,\sin \left( f_0 + 2 \omega \right) + 7\,\sin \left( 3 f_0 + 2 \omega \right) \right] \right. \nonumber \\&\quad + e\,\left[ -3\,e\,\sin \left( f_0 - 2 \omega \right) + \left( 20 + 19\,e^2\right) \,\sin 2\omega + 60\,\sin u_0 + 18\,\sin \left( 4f_0 + 2\omega \right) \right. \nonumber \\&\left. \left. + 33\,e\,\sin \left( f_0 + 2 \omega \right) + 17\,e\,\sin \left( 3 f_0 + 2 \omega \right) + 3\,e\,\sin \left( 5 f_0 + 2 \omega \right) \right] \right\} , \end{aligned}$$
(A.2.9)
$$\begin{aligned} \mathcal {{\overline{E}}}_4^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.10)
$$\begin{aligned} \mathcal {{\overline{E}}}_5^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.11)
$$\begin{aligned} \mathcal {{\overline{E}}}_6^{\left( J_2/c^2\right) }&:= 8\,\left[ 3\,\cos \left( f_0 + 2 \omega \right) + 7\,\cos \left( 3 f_0 + 2 \omega \right) \right] \nonumber \\&\quad + 2\,e\,\left[ 3\,e\,\cos \left( f_0 - 2 \omega \right) + \left( 20 + 19\,e^2\right) \,\cos 2\omega + 60\,\cos u_0\right. \nonumber \\&\quad + 18\,\cos \left( 4f_0 + 2\omega \right) \nonumber \\&\left. + 33\,e\,\cos \left( f_0 + 2 \omega \right) + 17\,e\,\cos \left( 3 f_0 + 2 \omega \right) + 3\,e\,\cos \left( 5 f_0 + 2 \omega \right) \right] , \end{aligned}$$
(A.2.12)
$$\begin{aligned} \mathcal {{\overline{I}}}_1^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.13)
$$\begin{aligned} \mathcal {{\overline{I}}}_2^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.14)
$$\begin{aligned} \mathcal {{\overline{I}}}_3^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.15)
$$\begin{aligned} \mathcal {{\overline{I}}}_4^{\left( J_2/c^2\right) }&:= 5\,e^2 + 3\,\cos u_0 + e\,\left[ -16\,\cos f_0 + 2\,e\,\cos 2\omega \right. \nonumber \\&\quad \left. + 3\,\cos \left( f_0 + 2 \omega \right) + \cos \left( 3 f_0 + 2 \omega \right) \right] , \end{aligned}$$
(A.2.16)
$$\begin{aligned} \mathcal {{\overline{I}}}_5^{\left( J_2/c^2\right) }&:= 3\,\sin u_0 + e\,\left[ 2\,e\,\sin 2\omega + 3\,\sin \left( f_0 + 2 \omega \right) + \sin \left( 3 f_0 + 2 \omega \right) \right] , \end{aligned}$$
(A.2.17)
$$\begin{aligned} \mathcal {{\overline{I}}}_6^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.18)
$$\begin{aligned} \mathcal {{\overline{N}}}_1^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.19)
$$\begin{aligned} \mathcal {{\overline{N}}}_2^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.20)
$$\begin{aligned} \mathcal {{\overline{N}}}_3^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.21)
$$\begin{aligned} \mathcal {{\overline{N}}}_4^{\left( J_2/c^2\right) }&:= 3\,\sin u_0 + e\,\left[ 2\,e\,\sin 2\omega + 3\,\sin \left( f_0 + 2 \omega \right) + \sin \left( 3 f_0 + 2 \omega \right) \right] , \end{aligned}$$
(A.2.22)
$$\begin{aligned} \mathcal {{\overline{N}}}_5^{\left( J_2/c^2\right) }&:= 5\,e^2 - 3\,\cos u_0\nonumber \\&\quad - e\,\left[ 16\,\cos f_0 + 2\,e\,\cos 2\omega + 3\,\cos \left( f_0 + 2 \omega \right) + \cos \left( 3 f_0 + 2 \omega \right) \right] , \end{aligned}$$
(A.2.23)
$$\begin{aligned} \mathcal {{\overline{N}}}_6^{\left( J_2/c^2\right) }&:=0,\end{aligned}$$
(A.2.24)
$$\begin{aligned} \mathcal {{\overline{P}}}_1^{\left( J_2/c^2\right) }&:= -4\,e\,\left( 44 + 17\,e^2 - 64\,e\,\cos f_0\right) \,\sin I, \end{aligned}$$
(A.2.25)
$$\begin{aligned} \mathcal {{\overline{P}}}_2^{\left( J_2/c^2\right) }&:= 6\,e\,\left( 44 + 17\,e^2 - 64\,e\,\cos f_0\right) \,\sin I, \end{aligned}$$
(A.2.26)
$$\begin{aligned} \mathcal {{\overline{P}}}_3^{\left( J_2/c^2\right) }&:= 2 \left\{ 4\,\left[ -3\,\cos \left( f_0 + 2 \omega \right) + 7\,\cos \left( 3 f_0 + 2 \omega \right) \right] \right. \nonumber \\&+ e\,\left[ -3\,e\,\cos \left( f_0 - 2 \omega \right) + 2\,\left( -10 + 9\,e^2\right) \,\cos 2\omega + 60\,\cos u_0 + \right. \nonumber \\&+ 18\,\cos \left( 4f_0 + 2\omega \right) + 45\,e\,\cos \left( f_0 + 2 \omega \right) + 19\,e\,\cos \left( 3 f_0 + 2 \omega \right) \nonumber \\&\left. \left. \quad + 3\,e\,\cos \left( 5 f_0 + 2 \omega \right) \right] \right\} \,\sin I, \end{aligned}$$
(A.2.27)
$$\begin{aligned} \mathcal {{\overline{P}}}_4^{\left( J_2/c^2\right) }&:= -16\,e\,\cos I \left\{ 3\,\sin u_0 + e\,\left[ 2\,e\,\sin 2\omega + 3\,\sin \left( f_0 + 2 \omega \right) + \sin \left( 3 f_0 + 2 \omega \right) \right] \right\} ,\end{aligned}$$
(A.2.28)
$$\begin{aligned} \mathcal {{\overline{P}}}_5^{\left( J_2/c^2\right) }&:= 16\,e\,\cos I \left\{ -5\,e^2 + 3\,\cos u_0 + e\,\left[ 16\,\cos f_0 + 2\,e\,\cos 2\omega \right. \right. \nonumber \\&\quad \left. \left. + 3\,\cos \left( f_0 + 2 \omega \right) + \cos \left( 3 f_0 + 2 \omega \right) \right] \right\} ,\end{aligned}$$
(A.2.29)
$$\begin{aligned} \mathcal {{\overline{P}}}_6^{\left( J_2/c^2\right) }&:= 4\,\sin I \left\{ 4\,\left[ -3\,\sin \left( f_0 + 2 \omega \right) + 7\,\sin \left( 3 f_0 + 2 \omega \right) \right] \right. \nonumber \\&+ e\,\left[ 3\,e\,\sin \left( f_0 - 2 \omega \right) + 2\,\left( -10 + 9\,e^2\right) \,\sin 2\omega + 60\,\sin u_0 \right. \nonumber \\&+ 18\,\sin \left( 4f_0 + 2\omega \right) + 45\,e\,\sin \left( f_0 + 2 \omega \right) + 19\,e\,\sin \left( 3 f_0 + 2 \omega \right) \nonumber \\&\left. \left. \quad + 3\,e\,\sin \left( 5 f_0 + 2 \omega \right) \right] \right\} ,\end{aligned}$$
(A.2.30)
$$\begin{aligned} \mathcal {{\overline{H}}}_1^{\left( J_2/c^2\right) }&:= 4\,e\,\left\{ 88 + 5\,e^4 - 16\,\sqrt{1 - e^2} - 3\,e^2\,\left( 21 + 8\,\sqrt{1 - e^2}\right) \right. \nonumber \\&\quad - e\,\left[ 3\,e^2\,\left( 7 + 4\,\sqrt{1 - e^2}\right) + 8\,\left( -17 + 6\,\sqrt{1 - e^2}\right) \right] \,\cos f_0 + \nonumber \\&\left. + e^2\,\left[ 8\,\left( 5 - 3\,\sqrt{1 - e^2}\right) \,\cos 2f_0 + e\,\left( 5 - 4\,\sqrt{1 - e^2}\right) \,\cos 3f_0\right] \right\} , \end{aligned}$$
(A.2.31)
$$\begin{aligned} \mathcal {{\overline{H}}}_2^{\left( J_2/c^2\right) }&:= 6\,e\,\left\{ -88 - 5\,e^4 + 16\,\sqrt{1 - e^2} + 3\,e^2\,\left( 21 + 8\,\sqrt{1 - e^2}\right) \right. \nonumber \\&\quad + e\,\left[ 3\,e^2\,\left( 7 + 4\,\sqrt{1 - e^2}\right) + 8\,\left( -17 + 6\,\sqrt{1 - e^2}\right) \right] \,\cos f_0 + \nonumber \\&\left. + 4\,e^2\,\sqrt{1 - e^2}\,\left( 6\,\cos 2f_0 + e\,\cos 3f_0\right) - 5\,e^2\,\left( 8\,\cos 2f_0 + e\,\cos 3f_0\right) \right\} , \end{aligned}$$
(A.2.32)
$$\begin{aligned} \mathcal {{\overline{H}}}_3^{\left( J_2/c^2\right) }&:= 3\,e^2\,\left( 2 - 7\,e^2\right) \,\cos \left( f_0 - 2 \omega \right) + 96\,e\,\sqrt{1 - e^2}\,\left( 1 + e\,\cos f_0\right) ^3\,\cos u_0 \nonumber \\&\quad + 8\,\left[ 3\,\cos \left( f_0 + 2 \omega \right) - 7\,\cos \left( 3 f_0 + 2 \omega \right) \right] \nonumber \\&+ e\,\left[ -2\,\left( -20 + 7\,e^2 + 13\,e^4\right) \,\cos 2\omega - 12\,\left( 14 + 11\,e^2\right) \,\cos u_0\right. \nonumber \\&- 18\,\left( 2 + 3\,e^2\right) \,\cos \left( 4f_0 + 2\omega \right) \nonumber \\&- 3\,e\,\left( 74 + 9\,e^2\right) \,\cos \left( f_0 + 2 \omega \right) - e\,\left( 138 + 31\,e^2\right) \,\cos \left( 3 f_0 + 2 \omega \right) \nonumber \\&\quad \left. - 3\,e\,\left( 2 + 3\,e^2\right) \,\cos \left( 5 f_0 + 2 \omega \right) \right] , \end{aligned}$$
(A.2.33)
$$\begin{aligned} \mathcal {{\overline{H}}}_4^{\left( J_2/c^2\right) }&:=0, \end{aligned}$$
(A.2.34)
$$\begin{aligned} \mathcal {{\overline{H}}}_5^{\left( J_2/c^2\right) }&:=0, \end{aligned}$$
(A.2.35)
$$\begin{aligned} \mathcal {{\overline{H}}}_6^{\left( J_2/c^2\right) }&:= -2\,\left[ 3\,e^2\,\left[ 2 + e^2\,\left( -7 + 4\,\sqrt{1 - e^2}\right) \right] \,\sin \left( f_0 - 2 \omega \right) \right. \nonumber \\&\quad + 2\,e\,\left[ -20 + 13\,e^4 + e^2\,\left( 7 - 36\,\sqrt{1 - e^2}\right) \right] \,\sin 2\omega + \nonumber \\&+ 8\,\left[ -3\,\sin \left( f_0 + 2 \omega \right) + 7\,\sin \left( 3 f_0 + 2 \omega \right) \right] \nonumber \\&\quad + e\,\left( 12\,\left[ 14 - 8\,\sqrt{1 - e^2} + e^2\,\left( 11 - 12\,\sqrt{1 - e^2}\right) \right] \,\sin u_0 \right. \nonumber \\&+ 18\,\left[ 2 + e^2\,\left( 3 - 4\,\sqrt{1 - e^2}\right) \right] \,\sin \left( 4f_0 + 2\omega \right) \nonumber \\&\quad + e \left\{ 3\,\left[ 74 - 48\,\sqrt{1 - e^2} + e^2\,\left( 9 - 12\,\sqrt{1 - e^2}\right) \right] \,\sin \left( f_0 + 2 \omega \right) \right. \nonumber \\&+ \left[ 138 - 144\,\sqrt{1 - e^2} + e^2\,\left( 31 - 36\,\sqrt{1 - e^2}\right) \right] \nonumber \\&\quad \left. \left. \left. \,\sin \left( 3 f_0 + 2 \omega \right) + 3\,\left[ 2 + e^2\,\left( 3 - 4\,\sqrt{1 - e^2}\right) \right] \,\sin \left( 5 f_0 + 2 \omega \right) \right\} \right) \right] . \end{aligned}$$
(A.2.36)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iorio, L. The post-Newtonian motion around an oblate spheroid: the mixed orbital effects due to the Newtonian oblateness and the post-Newtonian mass monopole accelerations. Gen Relativ Gravit 55, 136 (2023). https://doi.org/10.1007/s10714-023-03184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03184-7

Keywords

Navigation