Skip to main content
Log in

Evaluation of the Catalytic Activities of Supported Copper Catalysts Surrounded with Different Functional Groups by o-Ps Annihilation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Developing a facile and accurate method for assessing catalytic activities of supported metals can significantly promote the preparation and application of supported metal catalysts. Herein, we synthesized five MCM-41 materials functionalized with Schiff-base groups, which were employed as the supports for copper cations. The chemical structures and coordination of copper cations on the supports were characterized by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The grafting densities were calculated by analyzing the results of thermal gravimetric analysis (TGA) and elemental analysis (EA). The microstructures of these supported copper catalysts were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The oxidation of thioanisole to methylphenyl sulfoxide was employed to determine the catalytic activities of these supported copper catalysts while their o-Ps annihilation properties were evaluated by the positron annihilation lifetime spectroscopy. It is found that the o-Ps annihilation properties were linearly correlated with their catalytic activities. Therefore, the catalytic activities of supported copper species surrounded by different functional groups can be easily determined through o-Ps annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Wang, S., Yuan, M., Zhang, Q., and Huang, S., Curr. Opin. Green Sustainable Chem., 2022, vol. 38, p. 100698.

    Article  CAS  Google Scholar 

  2. Shang, M., Sun, S.Z., Wang, H.L., Wang, M.M., and Dai, H.X., Synthesis, 2016, vol. 48, p. 4381.

    Article  CAS  Google Scholar 

  3. Minyukova, T. P., Khassin, A.A., and Yurieva, T.M., Kinet. Catal., 2018, vol. 59, p. 112.

    Article  CAS  Google Scholar 

  4. Dadashi, J., Ghasemzadeh, M.A., and Salavati-Niasari, M., RSC Adv., 2022, vol. 12, p. 23481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rashidizadeh, A., Ghafuri, H., Goodarzi, N., and Azizi, N., Solid State Sci., 2020, vol. 109, p. 106427.

    Article  CAS  Google Scholar 

  6. Ghorbani-Choghamarani, A., Sahraei, R., Taherinia, Z., and Mohammadi, M., J. Iran. Chem. Soc., 2021, vol. 18, p. 827.

    Article  CAS  Google Scholar 

  7. Markad, D. and Mandal, S.K., Dalton Trans., 2018, vol. 47, p. 5928.

    Article  CAS  PubMed  Google Scholar 

  8. Khatioda, R., Pathak, D., and Sarma, B., ChemistrySelect, 2018, vol. 3, p. 6309.

    Article  CAS  Google Scholar 

  9. Wang, J.C., Hu, Y.H., Chen, G.J., and Dong, Y.B., Chem. Commun., 2016, vol. 52, p. 13116.

    Article  CAS  Google Scholar 

  10. Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.L., Tovar, M., Fischer, R.W., Nørskov, J.K., and Schlögl, R., Science, 2012, vol. 336, p. 893.

    Article  CAS  PubMed  Google Scholar 

  11. Kiani, A., Alinezhad, H., and Ghasemi, S., Appl. Organomet. Chem., 2022, vol. 36, p. e6676.

    Article  CAS  Google Scholar 

  12. Cheng, M.L., Qin, M.N., Sun, L., Liu, L., Liu, Q., and Tang, X.Y., Dalton Trans., 2020, vol. 49, p. 7758.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Hussein, M.F.I. and Adam, M.S.S., Appl. Organomet. Chem., 2020, vol. 34, p. e5598.

    Article  CAS  Google Scholar 

  14. Wang, C., Xie, S., Xie, Z., and Hui, Y., Chinese J. Org. Chem., 2013, vol. 33, p. 971.

    Article  CAS  Google Scholar 

  15. Shutilov, R.A., Zenkovets, G.A., Yu. Gavilov, V., Anufrienko, V.F., Larina, T.V., and Vasenin, N.T., Kinet. Catal., 2014, vol. 55, p. 620.

    Article  CAS  Google Scholar 

  16. Kan, D. and Shaily, Appl. Organomet. Chem., 2023, vol. 37, p. e7007.

    Article  Google Scholar 

  17. Zhao, H., Jiang, Y., Chen, Q., and Cai, M., New J. Chem., 2015, vol. 39, p. 2106.

    Article  CAS  Google Scholar 

  18. Zhao, H., Huang, B., Wu, Y., and Cai, M., J. Organmet. Chem., 2015, vol. 797, p. 21.

    Article  CAS  Google Scholar 

  19. Malik, A. and Singh, U.P., Polyhedron, 2023, vol. 237, p. 116396.

    Article  CAS  Google Scholar 

  20. Zendehdel, M. and Zamani, F., J. Porous Mater., 2017, vol. 24, p. 1263.

    Article  CAS  Google Scholar 

  21. Jean, Y.C., Mallon, P.E., and Schrader, D.M., Principles and Applications of Positron and Positronium Chemistry, World Scientific, 2003.

    Book  Google Scholar 

  22. Zhang, H.J., Chen, Z.Q., Wang, S.J., Kawasuso, A., and Morishita, N., Phys. Rev. B, 2010, vol. 82, p. 035439.

    Article  Google Scholar 

  23. Liu, Z.W., Zhang, H.J., and Chen, Z.Q., Appl. Surf. Sci., 2014, vol. 293, p. 326.

    Article  CAS  Google Scholar 

  24. Du, Y., Wei, S., Tang, M., Ye, M., Tao, H., Qi, C., and Shao, L., Appl. Organomet. Chem., 2020, vol. 34, p. e5619.

    Article  CAS  Google Scholar 

  25. Zeng, M., Qi, C., Yang, J., Wang, B., and Zhang, X.M., Ind. Eng. Chem. Res., 2014, vol. 53, p. 10041.

    Article  CAS  Google Scholar 

  26. Occelli, M.L., Biz, S., and Auroux, A., Appl. Catal. A: Gen., 1999, vol. 183, p. 231.

    Article  CAS  Google Scholar 

  27. Reddy, G.R., Chennakesavulu, K., Lakshmipathiraj, P., Ravindran, B., Woong Chang, S., Moon Lee, S., Nguyen Tri, P., and Nguyen, D.D., Environ. Technol. Innovation, 2021, vol. 22, p. 101492.

    Article  CAS  Google Scholar 

  28. Moorthy, M., Kannan, B., Madheswaran, B., and Rangappan, R., J. Porous Mater., 2016, vol. 23, p. 977.

    Article  CAS  Google Scholar 

  29. Saad, E.M., Hassan, H.M. A., Soltan, M.S., Butler, I.S., and Mostafa, S.I., Environ. Prog. Sustain. Energy, 2018, vol. 37, p. 746.

    Article  CAS  Google Scholar 

  30. Muthusami, R., Moorthy, M., Irena, K., Govindaraj, A., Manickam, C., and Rangappan, R., New J. Chem., 2018, vol. 42, p. 18608.

    Article  CAS  Google Scholar 

  31. Naz, A., Arun, S., Narvi, S.S., Alam, M.S., Singh, A., Bhartiya, P., and Dutta, P.K., Int. J. Biol. Macromol., 2018, vol. 110, p. 215.

    Article  CAS  PubMed  Google Scholar 

  32. Zendehdel, M. and Zamani, F., J. Porous Mater., 2017, vol. 24, p. 1263.

    Article  CAS  Google Scholar 

  33. Zheng, S., Gao, L., and Guo, J., J. Solid State Chem., 2000, vol. 152, p. 447.

    Article  CAS  Google Scholar 

  34. Jeslin Kanaga Inba, P., Annaraj, B., Thalamuthu, S., and Neelakantan, M.A., Bioinorg. Chem. Appl., 2013, vol. 2013, p. 439848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niakan, M., Asadi, Z., and Zare, S., ChemistrySelect, 2020, vol. 5, p. 40.

    Article  CAS  Google Scholar 

  36. Ramanjaneya Reddy, G., Balasubramanian, S., and Chennakesavulu, K., J. Mater. Chem. A, 2014, vol. 2, p. 15598.

    Article  CAS  Google Scholar 

  37. Ebrahimiasl, H. and Azarifar, D., Appl. Organomet. Chem., 2020, vol. 34, p. e5359.

    Article  CAS  Google Scholar 

  38. Liu, X., Xiao, J., Ding, H., Zhong, W., Xu, Q., Su, S., and Yin, D., Chem. Eng. J., 2016, vol. 283, p. 1315.

    Article  CAS  Google Scholar 

  39. Su, B., Zhang, Q., Shao, L., Zhou, S., Li, J., Du, Y., and Qi, C., J. Phys. Chem. Solids, 2022, vol. 168, p. 110818.

    Article  CAS  Google Scholar 

  40. Hoang, C., Nguyen, A.K., Pham, T.Q., Fang, W., and Tran, H.D., J. Ocul. Pharmacol. Ther., 2021, vol. 37, p. 441.

    Article  CAS  PubMed  Google Scholar 

  41. Zeng, J., Liu, Y., Chen, W., Zhao, X., Meng, L., and Wan, Q., Top. Curr. Chem., 2018, vol. 376, p. 27.

    Article  Google Scholar 

  42. Pulis, A.P. and Procter, D.J., Angew. Chem. Int. Ed., 2016, vol. 55, no. 34, p. 9842.

    Article  CAS  Google Scholar 

  43. Fascione, M.A., Brabham, R., and Turnbull, W.B., Chem. Eur. J., 2016, vol. 22, p. 3916.

    Article  CAS  PubMed  Google Scholar 

  44. Forchetta, M., Sabuzi, F., Stella, L., Conte, V., and Galloni, P., J. Org. Chem., 2022, vol. 87, p. 14016.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, B., Hammond, G.B., and Xu, B., Tetrahedron Lett., 2021, vol. 82, p. 153376.

    Article  CAS  Google Scholar 

  46. Wei, S., Liu, Y., Zhou, J., Xu, G., and Ni, Y., Mol. Catal., 2021, vol. 513, p. 111784.

    Article  CAS  Google Scholar 

  47. Tamoradi, T., Ghorbani-Choghamarani, A., and Ghadermazi, M., Appl. Organomet. Chem., 2018, vol. 32, p. e4340.

    Article  Google Scholar 

  48. Tamoradi, T., Ghadermazi, M., and Ghorbani-Choghamarani, A., Appl. Organomet. Chem., 2018, vol. 32, p. e3974.

    Article  Google Scholar 

  49. Tamoradi, T., Ghadermazi, M., and Ghorbani-Choghamarani, A., Catal. Lett., 2018, vol. 148, p. 857.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the National Natural Science Foundation of China (nos. 12075154 and 11975157).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linjun Shao or Chenze Qi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: FT-IR, Fourier-transform infrared spectroscopy; XPS, X-ray photoelectron spectroscopy; TGA, thermal gravimetric analysis; TEM, transmission electron microscopy; XRD, X-ray diffraction; PALS, positron annihilation lifetime spectroscopy; TBHP, tert-butyl hydroperoxide solution; APS, 3-aminopropyltrimethoxysilane; ICP-AES, inductively coupled plasma atomic emission spectrometry.

APPENDIX

APPENDIX

Fig. A1.
figure 13

1H NMR of methyl phenyl sulfoxide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Du, Y., Li, Y. et al. Evaluation of the Catalytic Activities of Supported Copper Catalysts Surrounded with Different Functional Groups by o-Ps Annihilation. Kinet Catal 64, 909–921 (2023). https://doi.org/10.1134/S002315842393002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842393002X

Keywords:

Navigation