Skip to main content
Log in

Dimethyl Ether Carbonylation in the Presence of an H-MOR Zeolite Modified with Copper, Cobalt, and Magnesium

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The adsorption, temperature-programmed desorption, and carbonylation of dimethyl ether (DME) in the presence of mordenite and ferrierite (SiO2/Al2O3 ≈ 20, Zeolyst International) is studied. The effect of introducing Cu, Co, and Mg cations by ion exchange is discussed. Dimethyl ether carbonylation is conducted at 200°С, a pressure of 3 MPa, and a space velocity of 8000 mL g–1 h–1 in the following mixture (vol %): DME, ⁓2.2; CO, 92.8–95.5; and the rest, N2. After an induction period, the methyl acetate content in the presence of mordenite is about 4–5 times higher than that in the presence of ferrierite. Water, methanol, and hydrocarbons are formed in trace amounts. The introduction of Cu, Co, and Mg cations into mordenite by ion exchange (single ion-exchange run, cation/Al ratio of no more than 35%) leads to an increase not only in stability, but also in activity in the DME carbonylation reaction. It is found that an increase in the content of copper (from 1.19 to 2.23 wt %) and magnesium (from 0.62 to 1.8 wt %) has different effects on activity. It increases in the case of copper and decreases in the case of magnesium. The prereduction of a copper-exchanged mordenite leads to the appearance of metallic copper particles on the surface of the mordenite crystallites and a decrease in activity. According to in situ diffuse reflectance infrared spectroscopy, the introduction of magnesium cations by three ion-exchange runs leads to a significant decrease in the number of Brønsted acid sites (BASes) in both the 12-MR and 8-MR channels of the mordenite. The catalytic characteristics of ferrierite hardly change upon the introduction of copper and magnesium by ion exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cheung, P., Bhan, A., Sunley, G.J., and Iglesia, E., Angew. Chem., 2006, vol. 118, p. 1647.

    Article  Google Scholar 

  2. Bhan, A., Allian, A.D., Sunley, G.J., Law, D.J., and Iglesia, E., J. Am. Chem. Soc., 2007, vol. 129, p. 4919.

    Article  CAS  PubMed  Google Scholar 

  3. Volnina, E.A., Kipnis, M.A., and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, no. 5, p. 353.

    Article  CAS  Google Scholar 

  4. Kipnis, M.A. and Volnina, E.A., Kinet. Catal., 2022, vol. 63, p. 129.

    Article  CAS  Google Scholar 

  5. Zhan, E., Xiong, Z., and Shen, W., J. Energy Chem., 2019, vol. 36, p. 51.

    Article  Google Scholar 

  6. Le, T.T., Chawla, A., and Rimer, J.D., J. Catal., 2020, vol. 391, p. 56.

    Article  CAS  Google Scholar 

  7. Alberti, A., Zeolites, 1997, vol. 19, p. 411.

    Article  CAS  Google Scholar 

  8. Simoncic, P. and Armbruster, T., Am. Mineral., 2004, vol. 89, p. 421.

    Article  CAS  Google Scholar 

  9. Kerr, I.S., Nature, 1966, vol. 210, p. 294.

    Article  CAS  Google Scholar 

  10. Guo, W., Zhu, L., Wang, H., Qiu, K., and Cen, K., J. Phys. Chem. C, 2015, vol. 119, p. 524.

    Article  Google Scholar 

  11. Li, Y., Huang, S., Cheng, Z., Wang, S., Ge, Q., Ma, X, J. Catal., 2018, vol. 365, p. 440.

    Article  CAS  Google Scholar 

  12. Cheng, Z., Huang, S., Li, Y., Cai, K., Yao, D., Lv, J., Wang, S., and Ma, X., Appl. Catal. A: Gen., 2019, vol. 576, p. 1.

    Article  CAS  Google Scholar 

  13. Zhan, H., Huang, S., Li, Y., Lv, J., Wang, S., and Ma, X., Catal. Sci. Technol., 2015, vol. 5, p. 4378.

    Article  CAS  Google Scholar 

  14. Reule, A.A.C., Semagina, N., ACS Catal., 2016, vol. 6, p. 4972.

    Article  CAS  Google Scholar 

  15. Reule, A.A.C., Prasad, V., and Semagina, N., Micropor. Mesopor. Mater., 2018, vol. 263, p. 220.

    Article  CAS  Google Scholar 

  16. Blasco, T., Boronat, M., Concepcion, P., Corma, A., Law, D., and Vidal-Moya, J.A., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 3938.

    Article  CAS  PubMed  Google Scholar 

  17. Ma, M., Zhan, E., Huang, X., Ta, N., Xiong, Z., and Bai, L., Shen, W., Catal. Sci. Technol., 2018, vol. 8, p. 2124.

    Article  CAS  Google Scholar 

  18. Xu, F., Hong, Z., Lv, J., Chen, C., Zhao, G., Miao, L., Yang, W., and Zhu, Z., Appl. Catal. A: Gen., 2022, vol. 648, p. 118928.

    Article  CAS  Google Scholar 

  19. Kipnis, M.A., Samokhin, P.V., Yashina, O.V., and Sukhorebrova, O.A., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 5, p. 851.

    Article  CAS  Google Scholar 

  20. Kipnis, M.A., Belostotskii, I.A., Volnina, E.A., Lin, G.I., Marshev, I.I, Kinet. Catal., 2018, vol. 59, p. 754.

    Article  CAS  Google Scholar 

  21. Samokhin, P.V., Belostotskii, I.A., Marshev, I.I., and Kipnis M.A., J. Anal. Chem., 2019, vol. 74, no. Suppl. 2, p. 17.

  22. Rasmussen, D.B., Christensen, J.M., Temel, B., Studt, F., Moses, P.G., Rossmeisl, J., Riisager, A., and Jensen, A.D., Catal. Sci. Technol., 2017, vol. 7, p. 1141.

    Article  CAS  Google Scholar 

  23. Feng, P., Zhang, G., Chen, X., Zang, K., and Li, X., Xu, L., Appl. Catal. A: Gen., 2018, vol. 557, p. 119.

    Article  CAS  Google Scholar 

  24. Kim, E.J., Gao, X., Tian, J., and Bae, J.W., Catal. Today, 2023, vols. 411–412, p. 113822.

    Article  Google Scholar 

  25. Cherkasov, N., Vazhnova, T., and Lukyanov, D.B., Vib. Spectrosc., 2016, vol. 83, p. 170.

    Article  CAS  Google Scholar 

  26. Little, L.H., Infrared Spectra of Adsorbed Species, London: Academic Press, 1966.

    Google Scholar 

  27. Theivasanthi, T. and Alagar, M., Arch. Phys. Res., 2010, vol. 1, no. 2, p. 112.

    CAS  Google Scholar 

  28. Reule, A.A.C., Shen, J., and Semagina, N., ChemPhysChem, 2018, vol. 19, p. 1500.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed at Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences using the equipment of the Center for collective use of this institute.

The authors thank A.R. Kubareva for participation in adsorption measurements and V.S. Ryleev for determining the morphology of the samples by TEM.

Funding

This work was performed under a state task to Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kipnis.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: BAS, Brønsted acid site; BET, Brunauer–Emmett–Teller method; DME, dimethyl ether; MA, methyl acetate; H-FER, ferrierite in the proton form; H-MOR, mordenite in the proton form; n-MR, n-membered ring; GHSV, gas hourly space velocity; TEM, transmission electron microscopy; IR, infrared; DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy; XRD, X-ray diffraction analysis; DFT, density functional theory; EELS, electron energy loss spectroscopy; EFTEM, energy-filtered transmission electron microscopy; EDS, energy-dispersive X-ray spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipnis, M.A., Galkin, R.S., Volnina, E.A. et al. Dimethyl Ether Carbonylation in the Presence of an H-MOR Zeolite Modified with Copper, Cobalt, and Magnesium. Kinet Catal 64, 849–861 (2023). https://doi.org/10.1134/S0023158423060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060071

Keywords:

Navigation