Skip to main content
Log in

Cu–Ni/SiO2 Catalysts for Dehydrogenation Reaction of Secondary Butyl Alcohol

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Cu–Ni/SiO2 catalysts were prepared by coprecipitation method and used in the dehydrogenation reaction of secondary butyl alcohol to methyl ethyl ketone (MEK). The crystal structure, reduction characteristics, element valence state and dispersibility of the catalysts were investigated using X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), X-ray Auger electron spectroscopy (XAES) and high resolution transmission electron microscopy (HRTEM). The role of Ni component in the dehydrogenation reaction of secondary butyl alcohol was analyzed. The results showed that the conversion of secondary butyl alcohol increased to over 99% when using the Cu–Ni/SiO2 catalyst. The addition of nickel component to Cu/SiO2 inhibited the agglomeration of copper nanoparticles. The interaction between copper and nickel was strengthened due to the formation of the Cu–Ni compound. This resulted in change to the valence state and improved the dispersion of copper species on the catalyst surface. The Cu+/(Cu+ + Cu0) ratio increased with the addition of nickel component to Cu/SiO2, which may be responsible for the enhancement of the secondary butyl alcohol conversion. However, the addition of the nickel component increased the reduction temperature of the catalysts and deteriorated their reduction characteristics, which leads to insufficient reduction, resulting in a high content of Cu+ species remaining in the catalyst. Therefore, side reactions can occur, which are detrimental to the selectivity and yield of MEK. The selectivity to MEK can reach 98% with the Cu/SiO2 catalyst, whereas that for the Cu–Ni/SiO2 catalyst was 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Halawy, S., Mohamed, M., and Abdelkader, A., Arab. J. Chem., 2018, vol. 11, p. 991. https://doi.org/10.1016/j.arabjc.2018.03.023

    Article  CAS  Google Scholar 

  2. Segovia-Hernández, J., Sanchez-Ramirez, E., and Ramirez-Marquez, C., Improvements in Bio-Based Building Blocks Production Through Process Intensification and Sustainability Concepts, Elsevier, 2022. p. 181. https://doi.org/10.1016/B978-0-323-89870-6.00004-4

    Book  Google Scholar 

  3. Sun, Y., Ni, L., and Maria, P., J. Loss. Prevent. Proc., 2020, vol. 66, p. 1. https://doi.org/10.1016/j.jlp.2020.104177

    Article  CAS  Google Scholar 

  4. Qiao, Z., Chin. J. Chem. Eng., 2006, vol. 14, p. 676. https://doi.org/10.1016/s1004-9541(06)60134-1

    Article  Google Scholar 

  5. Torres-Vinces, L., Contraras-Zarazua, G., and Huerta-Rosas, B., Chem. Eng. Technol., 2020, vol 43, p. 1433. https://doi.org/10.1002/ceat.201900664

    Article  CAS  Google Scholar 

  6. Lambert, S., Cellier, C., and Ferauche, F., Catal. Commun., 2007, vol. 8, p. 2032. https://doi.org/10.1016/j.catcom.2007.04.004

    Article  CAS  Google Scholar 

  7. Wang, B., Jin, M., and An, H., Catal. Lett., 2020, vol. 150, p. 56. https://doi.org/10.1007/s10562-019-02908-2

    Article  CAS  Google Scholar 

  8. Hu, Y.-F., Cai, J., and Jiang, G.-S., Adv. Mater. Res., 2013, vol. 750, p. 1773. https://doi.org/10.4028/www.scientific.net/AMR.750-752.1773

  9. Geravand, E., Shariatinia, Z., and Yaripour, F., Korean J. Chem. Eng., 2015, vol. 32, p. 2418. https://doi.org/10.1007/s11814-015-0087-x

    Article  CAS  Google Scholar 

  10. Vedyagin, A., Kotolevich, Y., and Tsyrul’nikov P., Int. J. Nanotechnol., 2016, vol. 13, p. 185. https://doi.org/10.1504/IJNT.2016.074533

    Article  CAS  Google Scholar 

  11. Shelepova, E., Ilina, L., and Vedyagin, A., React. Kinet. Mech. Catal., 2017, vol. 120, p. 449. https://doi.org/10.1007/s11144-016-1135-1

    Article  CAS  Google Scholar 

  12. Ponomareva, E., Krasnikova, I., and Egorova, E., React. Kinet. Mech. Catal., 2017, vol. 122, p. 399. https://doi.org/10.1007/s11144-017-1220-0

    Article  CAS  Google Scholar 

  13. Zhao, Y., Kong, L., and Xu, Y., Ind. Eng. Chem. Res., 2020, vol. 59, p. 12381. https://doi.org/10.1021/acs.iecr.0c01619

    Article  CAS  Google Scholar 

  14. Ye, C.-L., Cui, L., and Zhang, J.-L., Fuel. Process. Technol., 2016, vol. 143, p. 219. https://doi.org/10.1016/j.fuproc.2015.12.003

    Article  CAS  Google Scholar 

  15. Zhao, Y., Zhang, H., and Xu, Y., J. Energy. Chem., 2020, vol. 49, p. 248. https://doi.org/10.1016/j.jechem.2020.02.038

    Article  Google Scholar 

  16. Ren, Z., Younis, M.-N., and Li, C., RSC Adv., 2020, vol. 10, p. 5590. https://doi.org/10.1039/c9ra08780j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L., Jiang, M., and Zhang, Y., Russ. J. Phys. Chem., 2023, vol. 97, p. 603. https://doi.org/10.1134/s0036024423040209

    Article  CAS  Google Scholar 

  18. Xia, Z.-J., and Han, F., Catal. Commun., 2017, vol. 90, p. 39. https://doi.org/10.1016/j.catcom.2016.10.036

    Article  CAS  Google Scholar 

  19. Zhao, Y., Zhao, S., and Geng Y., Catal. Today, 2016, vol. 276, p. 28. https://doi.org/10.1016/j.cattod.2016.01.053

    Article  CAS  Google Scholar 

  20. Zhang, J., Kong, L., and Chen, Y., Front. Chem. Sci. Eng., 2021, vol. 15, p. 666. https://doi.org/10.1007/s11705-020-1982-1

    Article  CAS  Google Scholar 

  21. Zheng, Y., Wang, J., and Li, D., J. Energy. Inst., 2021, vol. 97, p. 58. https://doi.org/10.1016/j.joei.2021.04.008

    Article  CAS  Google Scholar 

  22. Huang, S., Xu. H., and Li, H., Fuel. Process. Technol., 2021, vol. 218, p. 106858. https://doi.org/10.1016/j.fuproc.2021.106858

    Article  CAS  Google Scholar 

  23. Miao, C., Zhou, G., and Chen, S., Renewably Energy, 2020, vol. 153, p. 1439. https://doi.org/10.1016/j.renene.2020.02.099

    Article  CAS  Google Scholar 

  24. Li, S., Han, X., and An, H., Kinet. Catal., 2021, vol. 62, p. 632. https://doi.org/10.1134/S0023158421050025

    Article  CAS  Google Scholar 

  25. Yin, A., Chao, W., and Guo, X., J. Catal., 2011, vol. 280, p. 77. https://doi.org/10.1016/j.jcat.2011.03.006

    Article  CAS  Google Scholar 

  26. Cai, B., Zhou, X.C., and Miao, Y.-C., ACS Sustainable Chem. Eng., 2016, vol. 5, p. 1322. https://doi.org/10.1021/acssuschemeng.6b01677

    Article  CAS  Google Scholar 

  27. Wu, Q., Eriksen, W.L., and Duchstein, L., Catal. Sci. Technol., 2014, vol. 4, p. 378. https://doi.org/10.1039/c3cy00546a

    Article  CAS  Google Scholar 

  28. Rao, T., Suchada, S., and Choi, C., Energy Convers. Manage., 2022, vol. 265, p. 115736. https://doi.org/10.1016/j.enconman.2022.115736

    Article  CAS  Google Scholar 

  29. Morales, M., Conesa, J., and Galvin, A., Catal. Today, 2023. https://doi.org/10.1016/j.cattod.2023.01.028

Download references

Funding

This work was supported by the Funds of Liaoning Provincial Department of Education (nos. LJKMZ20220764, LJ2019001), the Funds of Liaoning Province Applied Basic Research Program Project (no. 2023JH2/101300006), Liaoning BaiQianWan Talents Program (2020B085) and by Shenyang Science and Technology Bureau (no. RC190323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: ACF, activated carbon fibrous; ASC, aspen wood char; CNF, carbon nanofibers; MEK, methyl ethyl ketone; XRD, X-ray diffraction; H2-TPR, hydrogen temperature-programmed reduction; ICP-OES, inductively coupled plasma optical emission spectrometry; XPS, X-ray photoelectron spectroscopy; XAES, X-ray Auger electron spectroscopy; HRTEM, high resolution transmission electron microscopy; X, conversion; Y, yield; S, selectivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xue, Y. & Zhang, Y. Cu–Ni/SiO2 Catalysts for Dehydrogenation Reaction of Secondary Butyl Alcohol. Kinet Catal 64, 872–881 (2023). https://doi.org/10.1134/S0023158423930031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423930031

Keywords:

Navigation