Skip to main content
Log in

The First Application of Palladium–Phosphorus Catalysts in the Direct Synthesis of Hydrogen Peroxide: Reasons for the Promoting Action of Phosphorus

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The main reasons for the promoting effect of phosphorus on the properties of Pd–P/ZSM-5 catalysts during direct synthesis of H2O2 from H2 and O2 under mild conditions are considered based on the data obtained by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and inductively coupled plasma mass spectrometry (ICP MS). The introduction of phosphorus in the catalyst affects the particle size and the electronic state of palladium in the surface layer, as well as the surface concentration of the phosphate and phosphite ions. The yield of H2O2 increases when the particle size of the Pd–P catalysts decreases, when the side process of H2O2 decomposition is inhibited by the phosphate and phosphite surface ions, and when the hydrogen solubility in the solid solutions of phosphorus in palladium decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Menegazzo, F., Signoretto, M., Ghedini, E., and Strukul, G., Catalysts, 2019, vol. 9, no. 3, p. 251.

    Article  Google Scholar 

  2. Blanco-Brieva, G., Desmedt, F., Miquel, P., Campos-Martin, J.M., and Fierro, J.L.G., Catalysts, 2022, vol. 12, p. 796.

    Article  CAS  Google Scholar 

  3. Lewis, R.J., Koy, M., Macino, M., Das, M., Carter, J.H., Morgan, D.J., Davies, T.E., Ernst, J.B., Freakley, S.J., Glorius, F., and Hutchings, G.J., J. Am. Chem. Soc., 2022, vol. 144, p. 15431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnes, A., Lewis, R.J., Morgan, D.J., Davies, T.E., and Hutchings, G.J., Catal. Sci. Technol., 2022, vol. 12, p. 1986.

    Article  CAS  Google Scholar 

  5. Wang, S., Gao, K., Li, W., and Zhang, J., Appl. Catal. A: Gen., 2017, vol. 531, p. 89.

    Article  CAS  Google Scholar 

  6. Deguchi, T., Yamano, H., Takenouchi, S., and Iwamoto, M., Catal. Sci. Technol., 2018, vol. 8, p. 1002.

    Article  CAS  Google Scholar 

  7. Yoon, J., Han, G.-H., Lee, M.W., Lee, S.-H., Lee, S.H., and Lee, K.-Y., Appl. Surf. Sci., 2022, vol. 604, p. 154464.

    Article  CAS  Google Scholar 

  8. Shi, Y., Elnabawy, A.O., Gilroy, K.D., Hood, Z.D., Chen, R., Wang, C., Mavrikakis, M., and Xia, Y., ChemCatChem, 2022, vol. 14, p. e202200475.

    Article  CAS  Google Scholar 

  9. Blanco-Brieva, G., Montiel-Argaiz, M., Desmedt, F., Miquel, P., Campos-Martin, J.M., and Fierro, G.J.L., Top. Catal., 2017, vol. 60, p. 1151.

    Article  CAS  Google Scholar 

  10. Han, G.H., Lee, S.H., Hwang, S.Y., and Lee, K.Y., Adv. Energy Mater., 2021, vol. 11, no. 27, p. 2003121.

    Article  CAS  Google Scholar 

  11. Chen, L., Medlin, J.W., and Gronbeck, H., ACS Catal., 2021, vol. 11, p. 2735.

    Article  CAS  Google Scholar 

  12. Liu, Y., McCue, A.J., and Li, D., ACS Catal., 2021, vol. 11, p. 9102.

    Article  CAS  Google Scholar 

  13. Van, Ya., Nuzhdin, A.L., Shamanaev, I.V., and Bukhtiyarova, G.A., Kinet. Katal., 2022, vol. 63, no. 6, p. 743.

    Google Scholar 

  14. Zhurenok, A.V., Markovskaya, D.V., Potapenko, K.O., Cherepanova, S.V., Saraev, A.A., Gerasimov, E.Yu., and Kozlova, E.A., Kinet. Katal., 2022, vol. 63, no. 3, p. 294.

    Article  Google Scholar 

  15. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Kornaukhova, T.A., Milenkaya, E.A., and Schmidt, F.K., Mol. Catal., 2022, vol. 528, p. 112509.

    Article  CAS  Google Scholar 

  16. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley, 1972.

  17. Matthews, J.C., Nashua, N.H., and Wood, L.L., US Patent 3.474.464, 1969.

  18. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Kornaukhova, T.A., Milenkaya, E.A., and Schmidt, F.K., Kinet. Catal., 2022, vol. 63, no. 2, p. 197.

    Article  CAS  Google Scholar 

  19. Yu, S., Cheng, X., Wang, Y., Xiao, B., Xing, Y., Ren, J., Lu, Y., Li, H., Zhuang, H., and Chen, G., Nat. Commun., 2022, vol. 13, p. 4737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu, B., Deng, W., Li, R., Zhang, Q., Wang, Y., Delplanque-Janssens, F., Paul, F., Desmedt, F., and Miquel, P., J. Catal., 2014, vol. 319, p. 15.

    Article  CAS  Google Scholar 

  21. Liang, W., Fu, J., Chen, H., Zhang, X., and Deng, G., Mater. Lett., 2021, vol. 283, p. 128857.

    Article  CAS  Google Scholar 

  22. Smirnov, M.Yu., Kalinkin, A.V., Simonov, P.A., and Bukhtiyarov, V.I., Kinet. Katal., 2022, vol. 63, no. 5, p. 602.

    Article  Google Scholar 

  23. Lou, Y., Ma, J., Hu, W., Dai, Q., Wang, L., Zhan, W., Guo, Y., Cao, X.-M., Guo, X.-M., Hu, P., and Lu, G., ACS Catal., 2016, vol. 6, no. 12, p. 8127.

    Article  CAS  Google Scholar 

  24. Ustyugov A.V., Korypaeva V.V., Obeidat Z.Z., Putin A.Yu., Shvarts A.L., Bruk L.G., Kinet. Katal., 2022, vol. 63, no. 2, p. 258.

    Article  Google Scholar 

  25. Belykh, L.B., Sterenchuk, T.P., Skripov, N.I., Akimov, V.V., Tauson, V.L., Romanchenko, A.S., Gvozdovskaya, K.L., Sanzhieva, S.B., and Shmidt, F.K., Kinet. Catal., 2019, vol. 60, no. 6, p. 808.

    Article  CAS  Google Scholar 

  26. Lei, J., Niu, R., Wang, S., and Li, J., Solid State Sci., 2020, vol. 101, p. 106097.

    Article  CAS  Google Scholar 

  27. Gabasch, H., Unterberger, W., Hayek, K., Klotzer, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Havecker, M., Knop-Gericke, A., Schlog, R., Han, J., Ribeiro, F.H., Aszalos-Kiss, B., Curtin, T., and Zemlyanov, D., Surf. Sci., 2006, vol. 600, p. 2980.

    Article  CAS  Google Scholar 

  28. Wu, T., Kaden, W.E., Kunkel, W.A., and Anderson, S.L., Surf. Sci., 2009, vol. 603, p. 2764.

    Article  CAS  Google Scholar 

  29. Koyano, G., Yokoyama, S., and Misono, M., Appl. Catal. A: Gen., 1999, vol. 188, p. 301.

    Article  CAS  Google Scholar 

  30. Akolekar, D.B. and Bhargava, S.K., J. Mol. Catal. A: Chem., 2005, vol. 236, p. 77.

    Article  CAS  Google Scholar 

  31. Belykh L.B., Skripov N.I., Akimov V.V., Tauson V.L., Stepanova T.P., Shmidt F.K., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 1974.

  32. Neyyathala, A., Flecken, F., and Hanf, S., ChemPlusChem, 2023, vol. 88, p. e202200431.

    Article  CAS  PubMed  Google Scholar 

  33. Xiong, R., Zhao, W., Wang, Z., and Zhang, M., Mol. Catal., 2021, vol. 500, p. 111332.

    Article  CAS  Google Scholar 

  34. Skripov, N.I., Belykh, L.B., Belonogova, L.N., Umanets, V.A., Ryzhkovich, E.N., and Schmidt, F.K., Kinet. Catal., 2010, vol. 51, no. 5, p. 714.

    Article  CAS  Google Scholar 

  35. Khoshkhoo, M.S., Scudino, S., Thomas, J., Gemming, T., Wendrock, H., and Eckert, J., Mater. Lett., 2013, vol. 108, p. 343.

    Article  Google Scholar 

  36. Lewis, R.J. and Hutchings, G.J., ChemCatChem, 2019, vol. 11, p. 298.

    Article  CAS  Google Scholar 

  37. Cao, K., Yang, H., Bai, S., Xu, Y., Yang, C., Wu, Y., Xie, M., Cheng, T., Shao, Q., and Huang, X., ACS Catal. 2021, vol. 11, p. 1106.

    Article  CAS  Google Scholar 

  38. Jeong, H.E., Kim, S., Seo, M.-G., Lee, D.-W., and Lee, K.-Y., J. Mol. Catal. A: Chem. 2016, vol. 420, p. 88.

    Article  CAS  Google Scholar 

  39. Adams, J.S., Kromer, M.L., Rodríguez-López, J., and Flaherty, D.W., J. Am. Chem. Soc. 2021, vol. 143, p. 7940.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, L., Medlin, J.W., Gronbeck, H., ACS Catal., 2021, vol. 11, p. 2735.

    Article  CAS  Google Scholar 

  41. Deschner, B.J., Doronkin, D.E., Sheppard, T.L., Zimina, A., Grunwaldt, J.-D., and Dittmeyer, R., J. Phys. Chem. C, 2021, vol. 125, p. 3451.

    Article  CAS  Google Scholar 

  42. Flanagan, B.T.B., Biehl, G.E., Clewley, J.D., Kundqvist, S., and Anderson, Y., J.C.S. Faraday I, 1980, vol. 76, p. 196.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Multiaccess Center of Irkutsk State University, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences (PHOIBOS 150 MCD 9 photoelectronic spectrometer); Baikal Center for Nanotechnology, Irkutsk National Research Technical University (Tecnai G2 electron microscope); and Multiaccess Center for Isotope Geochemical Research (ELEMENT 2 high-resolution mass spectrometer). The zeolite Na-ZSM-5 was provided by S.A. Skornikova.

Funding

The study was supported by the Russian Science Foundation (grant no. 22-23-00836, https://rscf.ru/project/22-23-00836/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Belykh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: XPS is X-ray photoelectron spectroscopy; XRD, X-ray diffraction analysis; HRTEM, high-resolution transmission electron microscopy; ICP MS, inductively coupled plasma mass spectrometry; FWHM is the full width at half maximum of spectral lines; DMF, N,N-dimethylformamide; CSR, coherent scattering region; Eb, binding energy; dPd, the average size of palladium particles; a, activity; S, selectivity; and TOF, turnover frequency of reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, L.B., Skripov, N.I., Sterenchuk, T.P. et al. The First Application of Palladium–Phosphorus Catalysts in the Direct Synthesis of Hydrogen Peroxide: Reasons for the Promoting Action of Phosphorus. Kinet Catal 64, 804–814 (2023). https://doi.org/10.1134/S0023158423060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060022

Keywords:

Navigation