Skip to main content
Log in

Kinetics, Mechanism, and Reactivity of Intermediates of the Cerium(IV)–Oxalate Reaction in a Sulfate Medium

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The work presents an approach for studying the kinetics, mechanism, and reactivity of intermediates of a wide class of redox reactions for which the rate-limiting step is the redox decomposition of the intermediate complex. The approach was applied to the investigation of the oxidation of oxalic acid (H2Ox) by cerium(IV) in a sulfuric acid medium as part of the Belousov–Zhabotinsky oscillating reaction (BZ reaction) catalyzed by cerium ions. Experimental, mathematical, and computational methods that are typically used to study metal complexes in a stable oxidation state were kinetically generalized to variable-valence metal complexes and were used to determine the characteristics of intermediate complexes of the cerium(IV)–oxalate reaction and derive a general equation for its rate based on a set of equations describing the rapid achievement of pre-equilibrium in the system and the subsequent nonequilibrium process. A quantitative model of the process was proposed; it included two parallel reaction pathways, for which two different cerium(IV)–oxalate intermediate complexes were identified and characterized. The complexes have similar reactivity, which may be due to the similarity of the structure of their inner coordination spheres and the inner-sphere mechanism of electron transfer in the complexes. Using the developed model, a diagram of the yields of all main species of cerium(IV) under the conditions of the BZ reaction was constructed, which indicates the need to take into account the formation of intermediate complexes of the composition CeOHOx\(_{n}^{{3 - 2n}}\) (n = 1, 2) in the oxidation of oxalic acid under these conditions. The main difference between the presented model of the cerium(IV)–oxalate reaction as part of the BZ reaction and the previous models is the explicit consideration of the participation of intermediate complexes of cerium(IV) with oxalic acid anions and sulfate background anions in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. 1 Levanov et al. noted [46] that the oxidation of H2Ox to carbon dioxide in the presence of Mn(IV) as a catalyst also occurs through the formation and redox decomposition of a Mn(IV)–oxalate complex with the ratio M : R = 1 : 2.

REFERENCES

  1. Issa, G., Dimitrov, M., Ivanova, R., Kormunda, M., Henych, J., Jakub Tolasz, J., Kovachev, D., and Tsoncheva, T., Reac. Kinet. Mech. Catal., 2022, vol. 135, nos. 2–3, p. 105.

    Article  CAS  Google Scholar 

  2. Dalanta, F. and Kusworo, T.D., Chem. Eng. J., 2022, vol. 434, p. 134687.

    Article  CAS  Google Scholar 

  3. Matyshak, V.A., Sil’chenkova, O.N., Ilichev, A.N., and Korchak, V.N., Kinet. Catal., 2021, vol. 62, no. 3, p. 404.

    Article  CAS  Google Scholar 

  4. Chen, X., Yang, H., Au, C., Tian, S., Xiong, Y., and Chang, Y., Chem. Eng. J., 2020, vol. 390, p. 124480.

    Article  CAS  Google Scholar 

  5. Matus, E.V., Shlyakhtina, A.S., Sukhova, O.B., Ismagilov, I.Z., Ushakov, V.A., Yashnik, S.A., Nikitin, A.P., Bharali, P., Kerzhentsev, M.A., and Ismagilov, Z.R., Kinet. Catal., 2019, vol. 60, no. 2, p. 221.

    Article  CAS  Google Scholar 

  6. Ye, B., Chen, Z., Li, X., Liu, J., Wu, Q., Yang, C., Hu, H., and Wang, R., Front. Environ. Sci. Eng., 2019, vol. 13, no. 6.

  7. Sadlivskaya, M.V., Mikheeva, N.N., Zaikovskii, V.I., and Mamontov, G.V., Kinet. Catal., 2019, vol. 60, no. 4, p. 432.

    Article  CAS  Google Scholar 

  8. Lopatin, S.I., Shugurov, S.M., and Kurapova, O.Y., Russ. J. Gen. Chem., 2021, vol. 91, no. 10, p. 2008.

    Article  CAS  Google Scholar 

  9. Zhang, J., Wenzel, M., Schnaars, K., Hennersdorf, F., Schwedtmann, K., Maerz, J., Rossberg, A., Kaden, P., Kraus, F., Stumpf, T., and Weigand, J.J., Dalton Trans., 2021, vol. 50, p. 3550.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobsen, J., Wegner, L., Reinsch, H., and Stock, N., Dalton Trans., 2020, vol. 49, p. 11396.

    Article  CAS  PubMed  Google Scholar 

  11. Kozlova, T.O., Baranchikov, A.E., and Ivanov, V.K., Russ. J. Inorg. Chem., 2021, vol. 66, no. 12, p. 1761.

    Article  CAS  Google Scholar 

  12. Čupić, Ž. and Lente, G., React. Kinet. Mech. Catal., 2022, vol. 135, no. 3, p. 1137.

    Article  Google Scholar 

  13. Muzika, F. and Górecki, J., React. Kinet. Mech. Catal., 2022, vol. 135, no. 3, p. 1187.

    Article  CAS  Google Scholar 

  14. Pribus, M., Orlik, M., and Valent, I., React. Kinet. Mech. Catal., 2022, vol. 135, p. 1211.

    Article  CAS  Google Scholar 

  15. Chern, M.S., Watanabe, N., Okamoto, Y., and Umakoshi, H., Membrane, 2021, vol. 46, no. 4, p. 233.

    Article  Google Scholar 

  16. Mallphanov, I.L. and Vanag, V.K., Russ. Chem. Rev., 2021, vol. 90, no. 10, p. 1263.

    Article  Google Scholar 

  17. Voskresenskaya, O.O., Proc. 2nd Int. Conf. on Kinetics, Mechanisms and Catalysis, Budapest, Hungary, May 20−22, 2021, p. 122.

  18. Kasperek, G.T. and Bruice, T.C., Inorg. Chem., 1971, vol. 10, p. 382.

    Article  Google Scholar 

  19. Zhabotinsky, A.M., in Oscillations and Traveling Waves in Chemical Systems, Field, R.G. and Burger, M., Eds., New York: Interscience, 1985, p. 379.

    Google Scholar 

  20. Chern, M.S. and Faria, R.B., ACS Omega, 2019, vol. 4, p. 11581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, J., Zhang, Y., Ren, J., and Wu Yang, W., J. Mex. Chem. Soc., 2013, vol. 57, no. 1, p. 25.

    CAS  Google Scholar 

  22. Machado, P.B. and Faria, R.B., J. Phys. Chem. A, 2010, vol. 114, no. 10, p. 3742.

    Article  PubMed  Google Scholar 

  23. Pereira, J.A.M. and Faria, R.B., Quim. Nova, 2007, vol. 30, no. 3, p. 541.

    Article  CAS  Google Scholar 

  24. Rastogi, R.P., Prem Chand, Pandey, M.K., and Das, M., J. Phys. Chem. A, 2005, vol. 109, p. 4562.

    Article  CAS  PubMed  Google Scholar 

  25. Pereira, J.A.M. and Faria, R.B., J. Braz. Chem. Soc., 2004, vol. 15, p. 976.

    Article  CAS  Google Scholar 

  26. Pelle, K., Wittmann, M., Lovric, K., Noszticzius, Z., Turco Liveri, M.L., Lombardo, R., J. Phys. Chem. A, 2004, vol. 108, p. 7554.

    Article  CAS  Google Scholar 

  27. Hlavačova, J. and Ševčík, P., Chem. Phys. Lett., 1991, vol. 182, p. 588.

    Article  Google Scholar 

  28. Field, R.J. and Boyd, P.M., J. Phys. Chem., 1985, vol. 89, p. 3707.

    Article  CAS  Google Scholar 

  29. Noszticzius, Z. and Bodiss, J., J. Am. Chem. Soc., 1979, vol. 101, p. 3177.

    Article  CAS  Google Scholar 

  30. Györgyi, L., Turányi, T., and Field, R.J., J. Phys. Chem. A, 1990, vol. 94, p. 7162.

    Google Scholar 

  31. Field, R.J., Körös, E., and Noyes, R.M., J. Am. Chem. Soc., 1972, vol. 94, p. 8649.

    Article  CAS  Google Scholar 

  32. Richardson, W.H., in Organic Chemistry, Blomquist, A.T., Ed., New York: Academic Press, 1965, vol. 5, ch. 4, p. 244.

    Google Scholar 

  33. Sengupta, K.K. and Aditya, S., Z. Phys. Chem. (NF), 1963, vol. 38, p. 25.

    Article  Google Scholar 

  34. Yu, Y.-O. and Jwo J.-J., J. Chin. Chem. Soc., 2000, vol. 47, p. 433.

    Article  CAS  Google Scholar 

  35. Kvernberg, P.O., Hansen, E.W., Pedersen, B., Rasmussen, A., and Ruoff, P., J. Phys. Chem. A, 1997, vol. 101, p. 2327.

    Article  CAS  Google Scholar 

  36. Tsai, R.-F. and Jwo, J.-J., Int. J. Chem. Kinet., 2001, vol. 33, p. 101.

    Article  CAS  Google Scholar 

  37. Rustici, M., Lombardo, R., Mangone, M., Sbriziolo, C., Zambrano, V., and Turco Liveri, M.L., Faraday Discuss., 2001, vol. 120, p. 47.

    Google Scholar 

  38. Voskresenskaya, O., Kinetic and Thermodynamic Stability of Cerium(IV) Complexes with a Series of Aliphatic Organic Compounds, New York: Nova Science, 2013.

  39. Dodson, V.H. and Blach, A.Y., J. Am. Chem. Soc., 1957, vol. 79, p. 1325.

    Google Scholar 

  40. Van den Berg, J.A., Breet, E.L.G., and Pienaar, J.J., S. Afr. J. Chem., 2000, vol. 53, no. 2, p. 119.

    CAS  Google Scholar 

  41. Luzan, A.A. and Yatsimirskii, K.B., Zh. Neorg. Khim., 1968, vol. 13, p. 3216.

    CAS  Google Scholar 

  42. Voskresenskaya, O.O. and Skorik, N.A., Russ. J. Phys. Chem. A, 2015, vol. 89, p. 1821.

    Article  CAS  Google Scholar 

  43. Sokolovskaya, I.P. and Malkova, V.I., Sib. Khim. Zh., 1992, no. 5, p. 51.

  44. Vakhramova, G.P., Pechurova, N.I., and Spitsyn, V.I., Vestn. Mosk. Gos. Univ., 1974, no. 6, p. 682.

  45. Perminov, P.S., Fedorov, S.T., Matyukha, V.F., Milov, B.B., and Krot, N.N., Zh. Neorg. Khim., 1968, vol. 13, p. 651.

    Google Scholar 

  46. Levanov A.V., Isaikina O.Ya., and Gryaznov, R.A., Kinet. Catal., 2022, vol. 63, no. 2, p. 180.

    Article  CAS  Google Scholar 

  47. Temkin, O.N., Brook, L.G., and Zeigarnik A.V., Kinet. Katal., 1993, vol. 34, p. 445.

    CAS  Google Scholar 

  48. Skorik, N.A. and Chernov, E.B., Calculations with the Use of Personal Computers in the Chemistry of Complex Compounds, Tomsk: TSU Publisher, 2009.

    Google Scholar 

  49. Binnemans, K., Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A., Ed., North-Holland: Elsevier, 2006, vol. 36, p. 281.

    Google Scholar 

  50. Singh, R.S., Jha, P.N., and Prasad, R.K., Proc. Nation. Sci., 1987, vol. 57, no. 3, p. 272.

    Google Scholar 

  51. Nazareth, J.L., The Newton−Cauchy Framework. A Unified Approach to Unconstrained Nonlinear Minimization, Berlin: Springer, 1994.

    Google Scholar 

  52. Neumann, B., Steinbock, O., Müller, S., and Dalal Nar, S., J. Phys. Chem. A, 1996, vol. 100, p. 12342.

    CAS  Google Scholar 

  53. Voskresenskaya, O.O. and Skorik, N.A., Russ. J. Phys. Chem. A, 2023, vol. 97, no. 4, p. 663.

    Article  CAS  Google Scholar 

  54. Casari, B.M. and Lander, V., Acta Crystallogr. C, 2007, vol. 63, no. 4, p. i25.

    Article  CAS  PubMed  Google Scholar 

  55. Vilkov, L.V. and Pentin, Yu.A., Physical Methods of Investigation in Chemistry. Structural Methods and Optical Spectroscopy, Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Voskresenskaya.

Additional information

Abbreviations and notation: BZ reaction, Belousov–Zhabotinsky reaction; Mq+, oxidizing agent; M, metal ion; R, reducing agent; P and \({\text{P}}{\kern 1pt} '\), reaction products; H2Ox, oxalic acid; KM, Michaelis constant; \({{\beta }}_{n}^{{{\text{ef}}}}\), effective pre-equilibrium constant for the formation of an intermediate complex with the molar ratio M : R = 1 : n; βn, kn, and En, are stability constant, rate constant, and activation energy of intramolecular redox decomposition of the intermediate complex of the MRn type, respectively; τ0, time of start of reaction; D0, initial optical density; \( - {{\dot {D}}^{0}}\), initial rate of the redox process; RMech (I), free-radical mechanism with direct generation of the radical \({{{\text{R}}}^{ \bullet }};\) RMech (II), RMech (III), and RMech (IV), mechanisms with pre-equilibrium formation of one intermediate of the MR type, two intermediates MR and MR2, and one intermediate complex of the MR2 type, respectively; N, (n, x), and \(N{\kern 1pt} '\), number and stoichiometry of intermediate complexes of the M(H2−xOx)\(_{n}^{{q - nx}}\) type, and number of reaction pathways determined by them; QMod and Req, quantitative model of the process and general equation of its rate, respectively; and RMech, reaction mechanism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskresenskaya, O.O., Skorik, N.A. Kinetics, Mechanism, and Reactivity of Intermediates of the Cerium(IV)–Oxalate Reaction in a Sulfate Medium. Kinet Catal 64, 729–740 (2023). https://doi.org/10.1134/S0023158423060186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060186

Keywords:

Navigation