Skip to main content
Log in

Ammonia Synthesis and Decomposition in the Presence of Supported Ruthenium Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Based on analysis of the catalytic properties of 4%Ru–13.6%Cs/Sibunit and 4%Ru–5.4%Ba–7.9%Cs/Sibunit in the ammonia decomposition (105 Pa, 350–470°C) and ammonia synthesis processes (6 × 105–5 × 106 Pa, 400–430°C), an analytical expression for nitrogen formation/consumption rate in the reversible reaction N2 + 3H2 \( \rightleftharpoons \) 2NH3 has been derived to correctly describe the dependence of the chemical reaction rate on the partial pressures of the reaction mixture components for both the forward and reverse reactions. The approach used to derive the kinetic equation is based on the assumption that the adsorption sites of the ruthenium surface are filled with hydrogen, which is subsequently displaced by nitrogen during competitive interaction. Using the proposed kinetic equation, the equilibrium constants and apparent activation energies for ammonia synthesis and decomposition in the presence of 4%Ru–13.6%Cs/Sibunit and 4%Ru–5.4%Ba–7.9%Cs/Sibunit catalysts have been determined; the values are in good agreement with the published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Boisen, A., Dahl, S., Nørskov, J.K., and Christensen, C.H., J. Catal., 2005, vol. 230, no. 2, p. 309. https://doi.org/10.1016/j.jcat.2004.12.013

    Article  CAS  Google Scholar 

  2. Raróg-Pilecka, W., Szmigiel, D., Kowalczyk, Z., Jodzis, S., and Zielinski, J., J. Catal., 2003, vol. 218, no. 2, p. 465. https://doi.org/10.1016/S0021-9517(03)00058-7

    Article  CAS  Google Scholar 

  3. Petrunin, D.A., Borisov, V.A., Iost, K.N., Temerev, V.L., Trenikhin, M.V., Gulyaeva, T.I., Shlyapin, D.A., and Tsyrulnikov, P.G., AIP Conf. Proc., 2019, vol. 2141, p. 020024. https://doi.org/10.1063/1.5122043

    Article  CAS  Google Scholar 

  4. Kitano, M., Kanbara, S., Inoue, Y., Kuganathan, N., Sushko, P.V., Yokoyama, T., Hara, M., and Hosono, H., Nat. Commun., 2015, vol. 6, p. 6731. https://doi.org/10.1038/ncomms7731

    Article  CAS  PubMed  Google Scholar 

  5. Hosono, H. and Kitano M., Chem. Rev., 2021, vol. 121, no. 5, p. 3121. https://doi.org/10.1021/acs.chemrev.0c01071

    Article  CAS  PubMed  Google Scholar 

  6. Hayashi, F., Toda, Y., Kanie, Y., Kitano, M., Inoue, Y., Yokoyama, T., Hara, M., and Hosono, H., Chem. Sci., 2013, vol. 4, p. 3124. https://doi.org/10.1039/C3SC50794G

    Article  CAS  Google Scholar 

  7. Kulkarni, S.R., Realpe, N., Yerrayya, A., Velisoju, V.K., Sayas, S., Morlanes, N., Cerillo, J., Katikaneni, S.P., Paglieri, S.N., Solami, B., Gascon, J., and Castaño, P., Catal. Sci. Technol., 2023, vol. 13, no. 7, p. 2026. https://doi.org/10.1039/D3CY00055A

    Article  CAS  Google Scholar 

  8. Yamazaki, K., Matsumoto, M., Ishikawa, M., and Sato, A., Appl. Catal. B: Environ., 2023, vol. 325, p. 122352. https://doi.org/10.1016/j.apcatb.2022.122352

    Article  CAS  Google Scholar 

  9. Kikugawa, M., Goto, Y., Kobayashi, K., Nanba, T., Matsumoto, H., and Imagawa, H., J. Catal., 2022, vol. 413, p. 934. https://doi.org/10.1016/j.jcat.2022.08.004

    Article  CAS  Google Scholar 

  10. Sagel, V.N., Rouwenhorst, K.H.R., and Faria, J.A., Energies, 2022, vol. 15, p. 3374. https://doi.org/10.3390/en15093374

    Article  CAS  Google Scholar 

  11. Salmon, N. and Bañares-Alcántara, R., Sustainable Energy Fuels, 2021, vol. 5, p. 2814. https://doi.org/10.1039/D1SE00345C

    Article  CAS  Google Scholar 

  12. Nayak-Luke, R.M. and Bañares-Alcántara, R., Energy Environ. Sci., 2020, vol. 13, p. 2957. https://doi.org/10.1039/D0EE01707H

    Article  CAS  Google Scholar 

  13. Rouwenhorst, K.H., Van der Ham, A.G., Mul, G., and Kersten, S.R., Renewable Sustainable Energy Rev., 2019, vol. 114, p. 109339. https://doi.org/10.1016/j.rser.2019.109339

    Article  CAS  Google Scholar 

  14. Ufa, R.A., Malkova, Y.Y., Rudnik, V.E., Andreev, M.V., and Borisov, V.A., Int. J. Hydrogen Energy, 2022, vol. 47, p. 20347. https://doi.org/10.1016/j.ijhydene.2022.04.142

    Article  CAS  Google Scholar 

  15. Reese, M., Marquart, C., Malmali, M., Wagner, K., Buchanan, E., McCormick, A., and Cussler, E.L., Ind. Eng. Chem. Res., 2016, vol. 55, p. 3742. https://doi.org/10.1021/acs.iecr.5b04909

    Article  CAS  Google Scholar 

  16. Wen, D. and Aziz, M., Appl. Energy, 2022, vol. 319, p. 119272. https://doi.org/10.1016/j.apenergy.2022.119272

    Article  CAS  Google Scholar 

  17. Temkin, M.I., Morozov, N.M., and Shapatina, E.N., Kinet. Katal., 1963, no. 2, vol. 4, p. 260.

    CAS  Google Scholar 

  18. Avetisov, A.K., Kuchaev, V.L., Shapatina, E.N., and Zyskin, A.G., Katal. Prom-sti., 2008, no. 5, p. 11.

  19. Peng, P., Chen, P., Schiappacasse, C., Zhou, N., Anderson, E., Chen, D., Liu, J., Cheng, Y., Hatzenbeller, R., Addy, M., Zhang, Y., Liu, Y., and Ruan, R., J. Cleaner Prod., 2018, vol. 177, p. 597. https://doi.org/10.1016/j.jclepro.2017.12.229

    Article  CAS  Google Scholar 

  20. Aika, K., Catal. Today, 2017, vol. 286, p. 14. https://doi.org/10.1016/j.cattod.2016.08.012

    Article  CAS  Google Scholar 

  21. Javaid, R., Nanba, T., and Matsumoto, H., Kinetic analysis of ammonia production on Ru catalyst under high pressure conditions, in CO2 Free Ammonia as an Energy Carrier, Aika, K. and Kobayashi, H., Eds., Singapore: Springer, 2023. https://doi.org/10.1007/978-981-19-4767-4_18

    Book  Google Scholar 

  22. Egawa, C., Nishida, T., Naito, S., and Tamaru, K., J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Cond. Phase, 1984, vol. 80, no. 6, p. 1595. https://doi.org/10.1039/F19848001595

    Article  CAS  Google Scholar 

  23. Tsai, W. and Weinberg, W.H., J. Phys. Chem., 1987, vol. 91, no. 20, p. 5302. https://doi.org/10.1021/j100304a034

    Article  CAS  Google Scholar 

  24. Bradford, M.C.J., Fanning, P.E., and Vannice, M.A., J. Catal., 1997, vol. 172, no. 2, p. 479. https://doi.org/10.1006/jcat.1997.1877

    Article  CAS  Google Scholar 

  25. Sitar, R., Shah, J., Zhang, Z., Wikoff, H., Way, J.D., and Wolden, C.A., J. Membr. Sci., 2022, vol. 644, p. 120147. https://doi.org/10.1016/j.memsci.2021.120147

    Article  CAS  Google Scholar 

  26. Duan, X., Zhou, J., Qian, G., Li, P., Zhou, X., and Chen, D., Chin. J. Catal., 2010, vol. 31, p. 979. https://doi.org/10.1016/S1872-2067(10)60097-6

    Article  CAS  Google Scholar 

  27. Lamb, K., Hla, S.S., and Dolan, M., Int. J. Hydrogen Energy, 2019, vol. 44, p. 3726. https://doi.org/10.1016/j.ijhydene.2018.12.123

    Article  CAS  Google Scholar 

  28. Le, T.A., Do, Q.C., Kim, Y., Kim, T.-W., and Chae, H.-J., Korean J. Chem. Eng., 2021, vol. 38, p. 1087. https://doi.org/10.1007/s11814-021-0767-7

    Article  CAS  Google Scholar 

  29. Tripodi, A., Compagnoni, M., Bahadori, E., and Rossetti, I., J. Ind. Eng. Chem., 2018, vol. 66, p. 176. https://doi.org/10.1016/j.jiec.2018.05.027

    Article  CAS  Google Scholar 

  30. Devkota, S., Shin, B.-J., Mun, J.-H., Kang, T.-H., Yoon, H.C., Mazari, S.A., and Moon, J.-H., Fuel, 2023, vol. 342, p. 127879. https://doi.org/10.1016/j.fuel.2023.127879

    Article  CAS  Google Scholar 

  31. Zheng, W., Zhang, J., Xu, H., and Li, W., Catal. Lett., 2007, vol. 119, no. 3, p. 311. https://doi.org/10.1007/s10562-007-9237-z

    Article  CAS  Google Scholar 

  32. Iost, K.N., Temerev, V.L., Smirnova, N.S., Shlyapin, D.A., Borisov, V.A., Muromtsev, I.V., Trenikhin, M.V., Kireeva, T.V., Shilova, A.V., and Tsyrul’nikov, P.G., Russ. J. Appl. Chem., 2017, vol. 90, p. 887. https://doi.org/10.1134/S1070427217060088

    Article  CAS  Google Scholar 

  33. Borisov, V.A., Iost, K.N., Petrunin, D.A., Temerev, V.L., Muromtsev, I.V., Arbuzov, A.B., Trenikhin, M.V., Gulyaeva, T.I., Smirnova, N.S., Shlyapin, D.A., and Tsyrulnikov, P.G., Kinet. Catal., 2019, vol. 60, p. 372. https://doi.org/10.1134/S0023158419030029

    Article  CAS  Google Scholar 

  34. Borisov, V.A., Iost, K.N., Temerev, V.L., Leont’eva, N.N., Muromtsev, I.V., Arbuzov, A.B., Trenikhin, M.V., Savel’eva, G.G., Smirnova, N.S., and Shlyapin, D.A., Kinet. Catal., 2018, vol. 59, p. 136. https://doi.org/10.1134/S0023158418020015

    Article  CAS  Google Scholar 

  35. Borisov, V.A., Iost, K.N., Temerev, V.L., Fedotova, P.A., Surovikin, Y.V., Arbuzov, B., Trenikhin, V., and Shlyapin, D.A., Diam. Relat. Mater., 2020, vol. 108, p. 107986. https://doi.org/10.1016/j.diamond.2020.107986

    Article  CAS  Google Scholar 

  36. Iost, K.N., Borisov, V.A., Temerev, V.L., Smirnova, N.S., Surovikin, Y.V., Trenikhin, M.V., Arbuzov, A.B., Gulyaeva, T.I., Shlyapin, D.A., Tsyrulnikov, P.G., and Vedyagin, A.A., React. Kinet. Mech. Catal., 2019, vol. 127, p. 85. https://doi.org/10.1007/s11144-019-01555-3

    Article  CAS  Google Scholar 

  37. Wu, S. and Tsang, S.C.E., Trends Chem., 2021, vol. 3, p. 660. https://doi.org/10.1016/j.trechm.2021.04.010

    Article  CAS  Google Scholar 

  38. Ao, R., Lu, R., Leng, G., Zhu, Y., Yan, F., and Yu, Q., Energies, 2023, vol. 16, p. 921. https://doi.org/10.3390/en16020921

    Article  CAS  Google Scholar 

  39. Seets, D.C., Wheeler, M.C., and Mullins, C.B., J. Chem. Phys., 1995, vol. 103, no. 23, p. 10399. https://doi.org/10.1063/1.469878

    Article  CAS  Google Scholar 

  40. Dahl, S., Törnqvist, E., and Chorkendorff, I., J. Catal., 2000, vol. 192, no. 2, p. 381. https://doi.org/10.1006/jcat.2000.2858

    Article  CAS  Google Scholar 

  41. Shustorovich, E. and Bell A.T., Surf. Sci. Lett., 1991, vol. 259, no. 3, p. L791. https://doi.org/10.1016/0167-2584(91)90311-E

    Article  CAS  Google Scholar 

  42. Zhang, T., Zhou, R., Zhang, S., Zhou, R., Ding, J., Li, F., Hong, J., Dou, L., Shao, T., Murphy, A.B., Ostrikov, K., and Cullen, P.J., Energy Environ. Mater., 2023, vol. 6, p. e12344. https://doi.org/10.1002/eem2.12344

    Article  CAS  Google Scholar 

  43. Rouwenhorst, K.H.R., Kim, H.-H., and Lefferts, L., ACS Sustain. Chem. Eng., 2019, vol. 7, p. 17515. https://doi.org/10.1021/acssuschemeng.9b04997

    Article  CAS  Google Scholar 

  44. Fernández, C., Bion, N., Gaigneaux, E.M., Duprez, D., and Ruiz, P., J. Catal., 2016, vol. 344, p. 16. https://doi.org/10.1016/j.jcat.2016.09.013

    Article  CAS  Google Scholar 

  45. Hinrichsen, O., Catal. Today., 1999, vol. 53, no. 2, p. 177. https://doi.org/10.1016/S0920-5861(99)00115-7

    Article  CAS  Google Scholar 

  46. Shi, H., Jacobi, K., and Ertl, G., J. Chem. Phys., 1993, vol. 99, no. 11, p. 9248. https://doi.org/10.1063/1.465541

    Article  CAS  Google Scholar 

  47. Dietrich, H., Geng, P., Jacobi, K., and Ertl, G., J. Chem. Phys., 1996, vol. 104, no. 1, p. 375. https://doi.org/10.1063/1.470836

    Article  CAS  Google Scholar 

  48. Dahl, S., Sehested, J., Jacobsen, C.J.H., Törnqvist, E., and Chorkendorff, I., J. Catal., 2000, vol. 192, p. 391. https://doi.org/10.1006/jcat.2000.2857

    Article  CAS  Google Scholar 

  49. Yuan, P.-Q., Ma, Y.-M., Cheng, Z.-M., Zhu, Y.-A., and Yuan, W.-K., J. Mol. Struct. Theochem., 2007, vol. 807, p. 185. https://doi.org/10.1016/j.theochem.2006.12.023

    Article  CAS  Google Scholar 

  50. Zhao, P., He, Y., Cao, D.-B., Wen, X., Xiang, H., Li, Y.-W., Wanga, J., and Jiao, H., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 19446. https://doi.org/10.1039/C5CP02486B

    Article  CAS  PubMed  Google Scholar 

  51. Zupanc, C., Hornung, A., Hinrichsen, O., and Muhler, M., J. Catal., 2002, vol. 209, p. 501. https://doi.org/10.1006/jcat.2002.3647

    Article  CAS  Google Scholar 

  52. Shapovalova L.B., Zakumbaeva G.D., and Gabdrakipov A.V., Neftekhimiya, 2003, vol. 43, no. 3, p. 192.

    CAS  Google Scholar 

  53. Antonov, A.Yu., Bystrova, O.S., Boeva, O.A., and Zhavoronkova, K.N., Usp. Khim. Khim. Tekhnol., 2007, vol. 21, p. 13.

    Google Scholar 

  54. Antonov, A.Yu., Vinokurova, O.V., Hein, V.L., Bystrova, O.S., Boeva, O.A., and Zhavoronkova, K.N., Usp. Khim. Khim. Tekhnol., 2008, vol. 22, no. 8, p. 66.

    Google Scholar 

  55. Zhang, Z., Karakaya, C., Kee, R.J., Way, D., and Wolden, C.A., ACS Sustain. Chem. Eng., 2019, vol. 7, p. 18038. https://doi.org/10.1021/acssuschemeng.9b04929

    Article  CAS  Google Scholar 

  56. Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J., Ind. Eng. Chem. Res., 2021, vol. 60, no. 51, p. 18560. https://doi.org/10.1021/acs.iecr.1c00843

    Article  CAS  Google Scholar 

  57. Muhler, M., Rosowski, F., Hinrichsen, O., Hornung, A., and Ertl, G., Stud. Surf. Sci. Catal., 1996, vol. 101, p. 317. https://doi.org/10.1016/S0167-2991(96)80242-4

    Article  CAS  Google Scholar 

  58. Aika, K., Takano, T., and Murata, S., J. Catal., 1992, vol. 136, no. 1, p. 126. https://doi.org/10.1016/0021-9517(92)90112-U

    Article  CAS  Google Scholar 

  59. Gorodetskii, V.V., Kinet. Catal., 2009, vol. 50, p. 304. https://doi.org/10.1134/S0023158409020220

    Article  CAS  Google Scholar 

  60. Elokhin, V.I., Matveev, A.V., and Gorodetskii, V.V., Kinet. Catal., 2009, vol. 50, p. 40. https://doi.org/10.1134/S0023158409010066

    Article  CAS  Google Scholar 

  61. Elokhin, V.I., Matveev, A.V., Kovalyov, E.V., and Gorodetskii, V.V., Chem. Eng. J., 2009, vol. 154, p. 94. https://doi.org/10.1016/j.cej.2009.04.046

    Article  CAS  Google Scholar 

  62. Gorodetskii, V.V., Sametova, A.A., Matveev, A.V., and Tapilin, V.M., Catal. Today, 2009, vol. 144, p. 219. https://doi.org/10.1016/j.cattod.2008.12.014

    Article  CAS  Google Scholar 

  63. Gorodetskii, V.V., Matveev, A.V., and Brylyakova, A.A., Kinet. Catal., 2010, vol. 51, p. 873. https://doi.org/10.1134/S0023158410060133

    Article  CAS  Google Scholar 

  64. Wittreich, G.R., Liu, S., Dauenhauer, P.J., and Vlachos, D.G., Sci. Adv., 2023, vol. 8, p. eabl6576. https://doi.org/10.1126/sciadv.abl6576

  65. Ruzankin, S.F., Avdeev, V.I., Dobrynkin, N.M., Zhidomirov, G.M., and Noskov, A.S., J. Struct. Chem., 2003, vol. 44, p. 341. https://doi.org/10.1023/B:JORY.0000009659.26326.cd

    Article  CAS  Google Scholar 

  66. Ohmer, N., Stability of bulk and surface ruthenium nitrogen and hydrogen structures: A first-principles atomistic thermodynamics study, Diploma Thesis, Oldenburg: Carl von Ossietzky Universität, 2010. https://hdl.handle.net/11858/00-001M-0000-0010-F764-0

    Google Scholar 

  67. Jacobi, K., Wang, Y., Fan, C.Y., and Dietrich, H., J. Chem. Phys., 2001, vol. 115, p. 4306. https://doi.org/10.1063/1.1390523

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state task to Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (project no. AAAA-A21-121011390009-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Borisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

The paper is based on the proceedings of the 7th International School-Conference for Young Scientists “Catalysis: From Science to Industry” (October 11–15, 2022, Tomsk, Russia).

Abbreviations and notation: r, chemical reaction rate; V, volumetric flow rate of reaction mixture components; P, total pressure, partial pressures of reaction mixture components; X, nitrogen or ammonia conversion; T, temperature; k, chemical reaction rate constant; A, preexponential factor; Ea, activation energy for chemical reaction; K, equilibrium constant of chemical reaction; q, heat of adsorption of the reaction medium component on the ruthenium surface; θ, surface coverage of ruthenium by the reaction medium component.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyapin, D.A., Borisov, V.A., Temerev, V.L. et al. Ammonia Synthesis and Decomposition in the Presence of Supported Ruthenium Catalysts. Kinet Catal 64, 815–825 (2023). https://doi.org/10.1134/S0023158423060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060137

Keywords:

Navigation