Skip to main content
Log in

Implications of Active Intermediate and Olefin Attachment Position in the Piperine Metathesis

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

First and second generation of Grubbs catalysts (G1 and G2) were applied in the piperine olefin metathesis under different conditions. G1 was used in self-metathesis, G2 was implemented in both, self and cross-metathesis of piperine with eugenol. Results allowed to implicate about the main intermediate of the reaction and the position of olefin attachment to the catalyst, assuming that the reaction follows a pathway where 2A=B olefin leads to the formation of A=A and B=B. In addition, the results contributed to the studies of catalyst’s reactivity when the olefin metathesis product required the high electronic effect of the N-heterocyclic of G2. In this paper, the highest activity of G2 in the olefin metathesis of eugenol was observed when the first intermediate was Ru-eugenol-moiety in the cross-metathesis of the piperine with eugenol. This demonstrates that the acidity of the new carbene in the intermediate species causes inactivity only in the reaction with piperine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mol, J.C., J. Mol. Catal. A: Chem., 2004, vol. 213, p. 39. https://doi.org/10.1007/978-94-010-0066-6_29

    Article  CAS  Google Scholar 

  2. Grubbs, R.H., Tetrahedron, 2004, vol. 60, p. 7117. https://doi.org/10.1016/j.tet.2004.05.124

    Article  CAS  Google Scholar 

  3. Grubbs, R.H., Adv. Synth. Catal., 2007, vol. 349, p. 34. https://doi.org/10.1002/adsc.200600523

    Article  CAS  Google Scholar 

  4. Ferreira, V.F. and Silva, F.C., Química nova na escola, 2005, vol. 22, p. 1.

  5. Matos, J.M.E., Batista, N.C., Carvalho, R.M., Santana, A.A.S., Puzzi, P.N., Sanches, M., and Lima-Neto, B.S., Quim. Nova, 2007, vol. 30, p. 431. https://doi.org/10.1590/s0100-40422007000200034

    Article  CAS  Google Scholar 

  6. Santos, A.G., Bailey, G.A., Santos, E.N., and Fogg, D.E., ACS Catal., 2017, vol. 7, p. 3181. https://doi.org/10.1021/acscatal.6b03557

    Article  CAS  Google Scholar 

  7. Saraci, E., Wang, L., Theopold, K., and Lobo, R.F., ChemSusChem, 2018, vol. 22, p. 773. https://doi.org/10.1002/cssc.201701874

    Article  CAS  Google Scholar 

  8. Silva, C.P., Lima, F.C.A., Leal, R.C., Moita-Neto, J.M., Química Nova, 2010, vol. 33, p. 1444. https://doi.org/10.1590/s0100-40422010000700004

    Article  Google Scholar 

  9. Kotora, M., Topolovcan, N., and Araki, Y., Eur. J. Org. Chem., 2017, vol. 13, p. 1736. https://doi.org/10.1002/ejoc.201700132

    Article  CAS  Google Scholar 

  10. Souza, J.S., Martins, E.P.S., Sousa, H.D.S., de Oliveira, R.F., Alves, F.S., Lima, E.O., Cordeiro, L.V., Trindade, E.O., Lira, B.F., Rocha, G.B., Athayde-Filho, P. F., and Barbosa-Filho, J.M., Braz. Chem. Soc., 2021, vol. 32, p. 490.

    CAS  Google Scholar 

  11. França, A.A.C., Pereira, A.D., Fernandes, K.A., Costa, A.K.B., Ramos, M.A., Martins, F.A., Batista, N.C., Matos, J.M.E., and Sá, J.L.S., Revista Virtual de Química, 2021, vol. 13, p. 1. https://doi.org/10.21577/1984-6835.20200148

    Article  CAS  Google Scholar 

  12. Fernandes, K.A., França, A.A.C., Costa, A.K.B., Silva, E.A., Lima-Neto, B.S., Batista, N.C., and Sá, J.L.S., Química Nova, 2022, vol. 45, p. 777. https://doi.org/10.21577/0100-4042.2017087

    Article  CAS  Google Scholar 

  13. Lima, A.M.A., Paula, W.T., Leite, I.C.H., Gazolla, P.A.R., Abreu, L.M., Fonseca, V.R., Romão, W., Lacerda, V., Jr., Queiroz, V.T., Teixeira, R.R., and Costa, A.V., J. Braz. Chem. Soc., 2022, vol. 33, p. 1200. https://doi.org/10.21577/0103-5053.20220040

    Article  CAS  Google Scholar 

  14. França, A.A.C., Vieira, V.B., Silva, T.T., Braga, S.D., Costa, L.N., Santos, J.C., Sousa, D.A., Pereira, A.D., Lima-Neto, B.S., Martins, F.A., Sá, J.L.S., and Matos, J.M.E., in Ação catalítica do catalisador de 2 a geração de Grubbs na autometátese da piperina, Ponta Grossa: Atena, 2019, p. 26.

    Google Scholar 

  15. Evans, D., Osborn, J.A., Jardine, F.H., and Wilkinson, G., Nature, 1965, vol. 208, p. 1203. https://doi.org/10.1038/2081203b0

    Article  CAS  Google Scholar 

  16. Rodrigues, C., Delolo, F.G., Norinder, J., Börner, A., Bogado, A.L., Batista, A.A., J. Mol. Catal. A: Chem., 2017, vol. 426, p. 586. https://doi.org/10.1016/j.molcata.2016.09.020

    Article  CAS  Google Scholar 

  17. Fabrello, A., Bachelier, A., Urrutigoïty, M., and Kalck, P., Coord. Chem. Rev., 2010, vol. 254, p. 237. https://doi.org/10.1016/j.ccr.2009.09.002

    Article  CAS  Google Scholar 

  18. Chatterjee, A.K., Choi, T.L., Sanders, D.P., and Grubbs, R.H., J. Am. Chem. Soc., 2003, vol. 125, p. 11360. https://doi.org/10.1021/ja0214882

    Article  CAS  PubMed  Google Scholar 

  19. Costa, A.K.B., Fernandes, K.A., Vieira, V.B., França, A.A. C., Lima, W.A., Almeida, P.A., Matos, J.M.E., Lima-Neto, B.S.L., Sá, J.L.S., and Martins, F.A., Rev. Virtual Quim., 2022, vol. 45, p. 929. https://doi.org/10.21577/0100-4042.20170901

    Article  CAS  Google Scholar 

  20. Lehman, S.E., Schwendeman, J.E., O’Donnell, P.M., and Wagener, K.B., Inorg. Chim. Acta, 2003, vol. 345, p. 190. https://doi.org/10.1016/S0020-1693(02)01307-5

    Article  CAS  Google Scholar 

  21. Fokou, P.A. and Meier, M.A.R., Macromol. Rapid Commun., 2010, vol. 31, p. 368. https://doi.org/10.1002/marc.200900678

    Article  CAS  PubMed  Google Scholar 

  22. Sousa, D.A., Meneses, P.S., Gois, P.D. S., Silva, L.A., Junior, V.P.C., Lima-Neto, B.S., and Sá, J.L.S., Lett. Org. Chem., 2020, vol. 17, p. 596. https://doi.org/10.2174/1570178617666191127102552

    Article  CAS  Google Scholar 

  23. Sá, J.L., Vieira, L.H., Nascimento, E.S.P., and Lima-Neto, B.S., Appl. Catal., A: Gen., 2010, vol. 374, p. 194. https://doi.org/10.1016/j.apcata.2009.12.013

    Article  CAS  Google Scholar 

  24. Sá, J.L., Nascimento, E.S.P., Fonseca, L.R., and Lima-Neto, B.S., J. Appl. Polym. Sci., 2012, vol. 127, p. 3578. https://doi.org/10.1002/app.37741

    Article  CAS  Google Scholar 

  25. Fonseca, L.R., Nascimento, E.S.P., Sá, J.L.S., and Lima-Neto, B.S., New J. Chem., 2015, vol. 39, p. 4063. https://doi.org/10.1039/c5nj00321k

    Article  CAS  Google Scholar 

  26. Granato, A.V., Santos, A.G., and dos Santos, E.N., ChemSusChem, 2017, vol. 10, p. 1832. https://doi.org/10.1002/cssc.201700116

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CAPES (Higher Education Personnel Improvement Coordination), FAPEPI (Research Support Foundation of the State of Piauí) (Notice 06/2018 FAPEPI/CAPES), and the State University of Piauí (UESPI) and the Research Laboratory—Generation of New Technologies − GERATEC. In addition, we would like to thank the Institute of Chemistry São Carlos for the 1H NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. Elias de Matos or José L. da Silva Sá.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: G1 and G2, first and second generation of Grubbs catalysts; PCy3, tricyclohexylphosphine; GC–MS, gas chromatography–mass spectrometry; 1H NMR, proton nuclear magnetic resonance.

APPENDIX

APPENDIX

The supporting information iin Appendix ncludes chromatogram cross-metathesis of piperine with eugenol and piperine with cinnamyl alcohol, with G2 as catalyst and chromatogram of use additives SnCl2, CuCl2 and perhydroazepine in olefin metathesis with G1.

Fig. A1.
figure 6

Proposed structures and fragmentation mechanism of Dimer 1.

Fig. A2.
figure 7

Chromatogram from piperine cross-metathesis with eugenol (A) and piperine with cinnamyl alcohol, (B) with G2 as catalyst. Catalyst:substrate ratio was 1 : 1 mol, reaction time 48 h at 50°C. PCy3 (tricyclohexylphosphine); O=PCy3 (tricyclohexylphosphine oxidized).

Fig. A3.
figure 8

Chromatogram from piperine metathesis with G2: catalyst:substrate ratio 1 : 100 mol, 48 h, 50°C.

Fig. A4.
figure 9

Proposed structures and fragmentation mechanism of isopiperine.

Fig. A5.
figure 10

Chromatogram from piperine olefin metathesis with G1 using additives SnCl2 (A), CuCl2 (B), (C) perhydroazepine and 1,4-benzoquinone (D). Catalyst : substrate ratio 1 : 10 mol, 48 h 50°C. PCy3 (tricyclohexylphosphine); O=PCy3 (tricyclohexylphosphine oxidized), Iso-Pip (isopiperine).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

França, A., da Silva, E.A., Lima-Neto, B.S. et al. Implications of Active Intermediate and Olefin Attachment Position in the Piperine Metathesis. Kinet Catal 64, 783–792 (2023). https://doi.org/10.1134/S0023158423060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060058

Keywords:

Navigation