Skip to main content
Log in

Classification of repeated measurements using bias corrected Euclidean distance discriminant function

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper introduces a novel approach for approximating misclassification probabilities in Euclidean distance classifier when the group means exhibit a bilinear structure such as in the growth curve model first proposed by Potthoff and Roy (Biometrika 51:313–326, 1964). Initially, by leveraging certain statistical relationships, we establish two general results for the improved Euclidean discriminant function in both weighted and unweighted growth curve mean structures. We derive these approximations for the expected misclassification probabilities with respect to the distribution of the improved Euclidean discriminant function. Additionally, we compare the misclassification probabilities of the improved Euclidean discriminant function, the standard Euclidean discriminant function, and the linear discriminant function. It is important to note that in cases where the mean structure is weighted, a higher number of repeated measurements yields better classification results with the improved Euclidean discriminant function and the standard Euclidean discriminant function, allowing for more information to be acquired, as opposed to the linear discriminant function, which performs well with a smaller number of repeated measurements. Furthermore, we evaluate the accuracy of the suggested approximations by Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

The code used can be obtained from the corresponding author.

References

Download references

Funding

No funds received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Kanuti Ngailo.

Ethics declarations

Conflict of interest

Both authors have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we present the proofs for theorems.

A1: Proof of the theorem when the mean parameter of EDF is unweighted

Theorem 5.1

Consider the Euclidean discriminant function in (5). If \({\widehat{{\textbf{b}}}}_i,\) \(i\in \{1, 2\}\) is unweighted, then

$$\begin{aligned} {\mathbb{E}}\left[ \widehat{D}_E|{\varvec{x}}\in \pi _i\right] = (-1)^{i+1}\frac{1}{2}{\boldsymbol{\Delta }}_E^{2}+\frac{1}{2}\Bigg (\frac{1}{n_2}- \frac{1}{n_1}\Bigg )\text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) . \end{aligned}$$

Proof

We present the proof for the moments of \(U_i.\) Recall that

$$\begin{aligned} U_i=\left( {{\textbf{b}}}^{i}-\frac{1}{2}\left( \widehat{{{\textbf{b}}}}_{1}+ \widehat{{\textbf{b}}}_{2}\right) \right) ' {{\textbf{A}}}'{{\textbf{A}}}\left( \widehat{{\textbf{b}}}_{1}- \widehat{{{\textbf{b}}}}_{2}\right) . \end{aligned}$$

The expectation of \(U_i\) can be calculated as

$$\begin{aligned} {\mathbb{E}}\left[ U_i\right]&=\text{tr}\left\{ {\mathbb{E}}\left[ {{\textbf{A}}} \left( \widehat{{\textbf{b}}}_{1}-\widehat{{{\textbf{b}}}}_{2}\right) \left( \left( {{\textbf{A}}}{\textbf{b}}^{i}\right) '- \frac{1}{2} \left( \widehat{{\textbf{b}}}_{1}+\widehat{{{\textbf{b}}}}_{2} \right) '{{\textbf{A}}}'\right) \right] \right\} \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1} -{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'- \frac{1}{2}{{\textbf{A}}}\widehat{{{\textbf{b}}}}_{1} \widehat{{\textbf{b}}}'_{1}{{\textbf{A}}}'+ \frac{1}{2}{{\textbf{A}}}\widehat{{\textbf{b}}}_{2} \widehat{{{\textbf{b}}}}'_{2}{{\textbf{A}}}' \right\} \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1} -{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'- \frac{1}{2}{{\textbf{A}}}{\mathbb{E}}\left[ \widehat{{\textbf{b}}}_{1} \widehat{{{\textbf{b}}}}'_{1}\right] {{\textbf{A}}}'+ \frac{1}{2}{\textbf{A}}{\mathbb{E}}\left[ \widehat{{{\textbf{b}}}}_{2} \widehat{{\textbf{b}}}'_{2}\right] {{\textbf{A}}}' \right\} \\ &= \text{tr}\Big \{{{\textbf{A}}}\left( {{\textbf{b}}}_{1} -{\textbf{b}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'- \frac{1}{2}{\textbf{A}}\left( \frac{1}{n_1}\left( {{\textbf{A}}}' {{\textbf{A}}}\right) ^{-1} {\textbf{A}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}+{\textbf{b}}_{1} {{\textbf{b}}}'_{1}\right) {{\textbf{A}}}'\\ &\quad +\frac{1}{2}{{\textbf{A}}}\left( \frac{1}{n_2} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}{{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} +{{\textbf{b}}}_{2}{\textbf{b}}'_{2}\right) {{\textbf{A}}}'\Big \}\\ &= \text{tr}\Big \{{{\textbf{A}}}\left( {{\textbf{b}}}_{1} -{\textbf{b}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'- \frac{1}{2}\frac{1}{n_1}{{\textbf{A}}}\left( {{\textbf{A}}}' {{\textbf{A}}}\right) ^{-1} {\textbf{A}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}- \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}_{1}{{\textbf{b}}}'_{1}{{\textbf{A}}}' \end{aligned}$$
$$\begin{aligned} &\quad +\frac{1}{2}\frac{1}{n_2}{\textbf{A}}\left( {{\textbf{A}}}' {{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{\textbf{A}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}+ \frac{1}{2}{{\textbf{A}}}{\textbf{b}}_{2}{{\textbf{b}}}'_{2}{{\textbf{A}}}' \Big \}\\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'{{\boldsymbol{\Sigma }}}^{-1}- \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}'_{1}{{\textbf{b}}}'_{1} {{\textbf{A}}}'+ \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}_{2} {{\textbf{b}}}'_{2}{{\textbf{A}}}'\right\} \\ &\quad -\frac{1}{2}\left( \dfrac{1}{n_1}- \dfrac{1}{n_2}\right) \text{tr}\left\{ {{\textbf{A}}}\left( {{\textbf{A}}}' {\textbf{A}}\right) ^{-1}{{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}{{\textbf{A}}}'\right\} \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( \left( {\textbf{b}}_{1} -{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}- \frac{1}{2} \left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) \left( {{\textbf{b}}}_{1}+{\textbf{b}}_{2}\right) '\right) {{\textbf{A}}}'\right\} \\ &\quad -\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{A}}^{\prime } {{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{\textbf{A}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}{{\textbf{A}}}'\right\} \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1}- {{\textbf{b}}}_{2}\right) \left( {{\textbf{b}}}^{i}-\frac{1}{2} \left( {{\textbf{b}}}_{1}+{{\textbf{b}}}_{2}\right) '\right) {\textbf{A}}'\right\} - \frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \end{aligned}$$
$$\begin{aligned} &\quad \cdot \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{A}}^{\prime } {{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{\textbf{A}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}{{\textbf{A}}}'\right\} \\ &= \frac{1}{2}\left( {{\textbf{b}}}_{1}-{\textbf{b}}_{2}\right) ' {{\textbf{A}}}'{{\textbf{A}}}\left( {{\textbf{b}}}_{1}- {\textbf{b}}_{2}\right) (-1)^{i-1} - \frac{1}{2}\left( \dfrac{1}{n_1}- \dfrac{1}{n_2}\right) \\ &\quad \cdot \text{tr}\left\{ {{\textbf{A}}} \left( {\textbf{A}}^{\prime }{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{\textbf{A}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}{{\textbf{A}}}'\right\} \\ &= \frac{1}{2}\Delta ^2(-1)^{i-1}-\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left( {{\textbf{P}}}_{{{\textbf{A}}}}{{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{\textbf{A}}}\right) \\ &= \frac{1}{2}\Delta ^2(-1)^{i-1}-\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}{{\textbf{P}}}_{{\textbf{A}}}\right) \\ &= \frac{1}{2}\Delta ^2(-1)^{i-1}-\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) , \quad {\textbf{P}}_{{{\textbf{A}}}}{{\textbf{P}}}_{{{\textbf{A}}}} ={{\textbf{P}}}_{{{\textbf{A}}}}, \quad i=1, 2. \end{aligned}$$

\(\square\)

A2: Proof of the theorem when the mean parameter of EDF is weighted

Theorem 5.2

Consider the Euclidean discriminant function in (5). If \({\widehat{{\textbf{b}}}}_i,\) \(i\in \{1, 2\}\) is weighted, then

$$\begin{aligned} {\mathbb{E}}\left[ \widehat{D}_E|{\varvec{x}}\in \pi _i\right] = \frac{1}{2}(-1)^{(i-1)}{\boldsymbol{\Delta }}^2_E+\frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1}\text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}\right) ^{-1}{\textbf{A}}'\right) . \end{aligned}$$

Proof

For moments of \(U_i,\) \({\mathbb{E}}\left[ U_i\right]\) can be calculated as

$$\begin{aligned} {\mathbb{E}}\left[ U_i\right]&= \text{tr}\left\{ {\mathbb{E}}\left[ \left( \widehat{{\textbf{b}}}_{1}- \widehat{{{\textbf{b}}}}_{2}\right) ' {{\textbf{A}}}'{\varvec{x}}_i- \frac{1}{2}\left( \widehat{{{\textbf{b}}}}_{1}-\widehat{{\textbf{b}}}_{2} \right) ' {{\textbf{A}}}'{{\textbf{A}}}\left( \widehat{{\textbf{b}}}_{1}+ \widehat{{{\textbf{b}}}}_{2}\right) \right] \right\} {\mathbb{E}}_{{\textbf{S}}}\left[ {\mathbb{E}}\left[ U_i|{\widehat{{\textbf{b}}}}_1, \widehat{{\textbf{b}}}_2, {\textbf{S}}\right] \right] \\ &= {\mathbb{E}}_{{\textbf{S}}} \text{tr}\left\{ {\mathbb{E}}\left[ \left( {{\textbf{A}}}\widehat{{{\textbf{b}}}}_{1}-{{\textbf{A}}} \widehat{{{\textbf{b}}}}_{2}\right) \left( \left( {{\textbf{A}}} {{\textbf{b}}}^{i}-\frac{1}{2}\left( {{\textbf{A}}} \widehat{{{\textbf{b}}}}_{1}+ {\textbf{A}}\widehat{{{\textbf{b}}}}_{2}\right) ' \right) | \widehat{{{\textbf{b}}}}_{1}, \widehat{{{\textbf{b}}}}_{2}, {{\textbf{S}}}\right) \right] \right\} \\ &= \left( {{\textbf{b}}}_{1}-{{\textbf{b}}}_{2}\right) ' {\textbf{A}}'{{\textbf{A}}}{{\textbf{b}}}^{i} - \frac{1}{2}\frac{1}{n_1} \text{tr} \left\{ {\mathbb{E}}\left[ {{\textbf{A}}}\left( {{\textbf{A}}}' {\textbf{S}}^{-1}{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{\textbf{S}}^{-1}{{\textbf{A}}} \left( {{\textbf{A}}}^{\prime }{{\textbf{S}}}^{-1}{\textbf{A}}\right) ^{-1}{{\textbf{A}}}' \right] \right\} \end{aligned}$$
$$\begin{aligned} &\quad +\frac{1}{2}\frac{1}{n_2}\text{tr}\left\{ {\mathbb{E}}\left[ {{\textbf{A}}}\left( {\textbf{A}}'{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}{{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1} {{\textbf{A}}}\left( {{\textbf{A}}}^{\prime }{\textbf{S}}^{-1}{{\textbf{A}}} \right) ^{-1}{{\textbf{A}}}'\right] \right\} \\ &\quad -\frac{1}{2}\left( \widehat{{\textbf{b}}}_{1}-\widehat{{{\textbf{b}}}}_{2}\right) ' {{\textbf{A}}}'{\textbf{A}}\left( \widehat{{{\textbf{b}}}}_{1}+\widehat{{{\textbf{b}}}}_{2}\right) \\ &= \left( {{\textbf{b}}}_{1}-{{\textbf{b}}}_{2}\right) '{\textbf{A}}'{{\textbf{A}}} \left( {\textbf{b}}_i-\frac{1}{2}\left( {\textbf{b}}_1+{\textbf{b}}_2\right) \right) - \frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \\ &\quad \cdot \dfrac{(p-q-1)(p-1)}{(n-q-1)(p-n+q-1)} \text{tr}\left( \left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}\right) ^{-1}\right) \\ &= \frac{1}{2}(-1)^{i+1}\Delta ^2 - \frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \text{tr}{\mathbb{E}}\left[ {{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{S}}^{-1}{{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{{\textbf{A}}} \left( {{\textbf{A}}}^{\prime }{\textbf{S}}^{-1}{{\textbf{A}}} \right) ^{-1}{{\textbf{A}}}' \right] \\ &= (-1)^{i+1}\frac{1}{2}\Delta ^2-\frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1}\text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}'\right) ^{-1}{\textbf{A}}'\right) . \end{aligned}$$

\(\square\)

A3: Proof of Theorem 3.3, bias corrected Euclidean discriminant function (unweighted case)

We first present the proof for the moments of \(U_i.\) Recall that

$$\begin{aligned} U_i=\left( {{\textbf{b}}}^{i}-\frac{1}{2}\left( \widehat{{{\textbf{b}}}}_{1}+\widehat{{\textbf{b}}}_{2}\right) \right) ' {{\textbf{A}}}'{{\textbf{A}}} \left( \widehat{{\textbf{b}}}_{1}-\widehat{{{\textbf{b}}}}_{2}\right) + \left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) . \end{aligned}$$

Then \({\mathbb{E}}\left[ U_i\right]\) can be calculated as

$$\begin{aligned} {\mathbb{E}}\left[ U_i\right]&= \text{tr}\left\{ {\mathbb{E}}\left[ {{\textbf{A}}}\left( \widehat{{\textbf{b}}}_{1}-\widehat{{{\textbf{b}}}}_{2}\right) \left( \left( {{\textbf{A}}}{\textbf{b}}^{i}\right) ' - \frac{1}{2}\left( \widehat{{\textbf{b}}}_{1}+\widehat{{{\textbf{b}}}}_{2}\right) '{{\textbf{A}}}'\right) \right] \right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}' - \frac{1}{2}{{\textbf{A}}}\widehat{{{\textbf{b}}}}_{1}\widehat{{\textbf{b}}}'_{1}{{\textbf{A}}}' + \frac{1}{2}{{\textbf{A}}}\widehat{{\textbf{b}}}_{2}\widehat{{{\textbf{b}}}}'_{2}{{\textbf{A}}}' \right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}' - \frac{1}{2}{{\textbf{A}}}{\mathbb{E}} \left( \widehat{{\textbf{b}}}_{1}\widehat{{{\textbf{b}}}}'_{1}\right) {{\textbf{A}}}'+ \frac{1}{2}{\textbf{A}}{\mathbb{E}} \left( \widehat{{{\textbf{b}}}}_{2}\widehat{{{\textbf{b}}}}'_{2} \right) {{\textbf{A}}}' \right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\Big \{{{\textbf{A}}}\left( {{\textbf{b}}}_{1}-{\textbf{b}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'- \frac{1}{2}{\textbf{A}}\left( \frac{1}{n_1}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} {\textbf{A}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}+{\textbf{b}}_{1}{{\textbf{b}}}'_{1}\right) {{\textbf{A}}}' \\ &\quad +\frac{1}{2}{{\textbf{A}}}\left( \frac{1}{n_2}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} {\textbf{A}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}+ {\textbf{b}}_{2}{{\textbf{b}}}'_{2}\right) {{\textbf{A}}}'\Big \} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{\textbf{P}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\Big \{{{\textbf{A}}}\left( {{\textbf{b}}}_{1}-{\textbf{b}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'- \frac{1}{2}\frac{1}{n_1}{{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} {\textbf{A}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} - \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}_{1}{{\textbf{b}}}'_{1}{{\textbf{A}}}' \\ &\quad +\frac{1}{2}\frac{1}{n_2}{{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1} + \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}_{2}{\textbf{b}}'_{2}{{\textbf{A}}}' \Big \} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i}{{\textbf{A}}}'{{\boldsymbol{\Sigma }}}^{-1} - \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}'_{1}{{\textbf{b}}}'_{1}{{\textbf{A}}}' + \frac{1}{2}{{\textbf{A}}}{{\textbf{b}}}_{2}{{\textbf{b}}}'_{2}{{\textbf{A}}}'\right\} \\ &\quad -\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left\{ {{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}{{\textbf{A}}}'\right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{\textbf{P}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( \left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) {{\textbf{b}}}^{i} - \frac{1}{2}\left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) \left( {{\textbf{b}}}_{1}+{\textbf{b}}_{2}\right) '\right) {{\textbf{A}}}'\right\} \\ &\quad -\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{A}}^{\prime }{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}{{\textbf{A}}}'\right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{b}}_{1}-{{\textbf{b}}}_{2}\right) \left( {{\textbf{b}}}^{i}-\frac{1}{2}\left( {{\textbf{b}}}_{1}+{{\textbf{b}}}_{2}\right) '\right) {\textbf{A}}'\right\} - \frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \\ &\quad \cdot \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{A}}^{\prime }{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{\textbf{A}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1}{{\textbf{A}}}'\right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \frac{1}{2}\left( {{\textbf{b}}}_{1}-{\textbf{b}}_{2}\right) ' {{\textbf{A}}}'{{\textbf{A}}} \left( {{\textbf{b}}}_{1}-{\textbf{b}}_{2}\right) (-1)^{i-1}- \frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \\ &\quad \cdot \text{tr}\left\{ {{\textbf{A}}}\left( {\textbf{A}}^{\prime }{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{\textbf{A}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'\right\} + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \frac{1}{2}\Delta ^2(-1)^{i-1}-\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left( {{\textbf{P}}}_{{{\textbf{A}}}}{{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{\textbf{A}}}\right) + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \frac{1}{2}\Delta ^2(-1)^{i-1}-\frac{1}{2}\left( \dfrac{1}{n_1}-\dfrac{1}{n_2}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}{{\textbf{P}}}_{{\textbf{A}}}\right) + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) \\ &= \frac{1}{2}(-1)^{i+1}\Delta ^2-\frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) - \frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \text{tr}\left( {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right) , \end{aligned}$$
(18)

where, in (18), \({{\textbf{P}}}_{{{\textbf{A}}}}{{\textbf{P}}}_{{\textbf{A}}}={{\textbf{P}}}_{{{\textbf{A}}}},\) \(i=1, 2.\)

Next we provide a derivation for \({\mathbb{E}}\left[ V_0\right]\):

$$\begin{aligned} {\mathbb{E}}\left[ V_0\right]&= {\mathbb{E}}\left[ \left( \widehat{{{\textbf{b}}}}_1-\widehat{{\textbf{b}}}_2\right) ' {{\textbf{A}}}'{{\textbf{A}}} \left( \widehat{{\textbf{b}}}_1-\widehat{{{\textbf{b}}}}_2\right) \right] \\ &= {\mathbb{E}}\left[ \text{tr}\left\{ {{\textbf{A}}}'{\textbf{A}} \left( \widehat{{{\textbf{b}}}}_1-\widehat{{{\textbf{b}}}}_2\right) \left( \widehat{{{\textbf{b}}}}_1-\widehat{{{\textbf{b}}}}_2\right) ' \right\} \right] \\ &= \text{tr}\left\{ {{\textbf{A}}}'{{\textbf{A}}}{\mathbb{E}} \left[ \left( \widehat{{{\textbf{b}}}}_1-\widehat{{{\textbf{b}}}}_2\right) \left( \widehat{{{\textbf{b}}}}_1-\widehat{{{\textbf{b}}}}_2\right) ' \right] \right\} \\ &= \text{tr}\left\{ {{\textbf{A}}}'{{\textbf{A}}}\left( \left( \frac{1}{n_1}+\frac{1}{n_2}\right) \left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}{{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}+ \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) \left( {\textbf{b}}_1-{{\textbf{b}}}_2\right) '\right) \right\} \\ &= \text{tr}\left\{ {{\textbf{A}}}'{{\textbf{A}}}\left( \frac{1}{n_1}+\frac{1}{n_2}\right) \left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}{{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}\right\} + \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) '{\textbf{A}}'{{\textbf{A}}} \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) \\ &= \left( \frac{1}{n_1}+\frac{1}{n_2}\right) \text{tr}\left\{ {{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}'{{\boldsymbol{\Sigma }}}{{\textbf{A}}} \left( {{\textbf{A}}}'{\textbf{A}}\right) ^{-1}{{\textbf{A}}}'\right\} + \left( {{\textbf{b}}}_1-{\textbf{b}}_2\right) '{{\textbf{A}}}'{{\textbf{A}}} \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) \\ &= \left( \frac{1}{n_1}+\frac{1}{n_2}\right) \text{tr}\left\{ {{\textbf{P}}}_{{{\textbf{A}}}}{{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{\textbf{A}}}\right\} + \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) '{{\textbf{A}}}'{{\textbf{A}}} \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) \\ &= \left( \frac{1}{n_1}+\frac{1}{n_2}\right) \text{tr}\left\{ {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}{{\textbf{P}}}_{{\textbf{A}}}\right\} + \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) '{{\textbf{A}}}'{{\textbf{A}}} \left( {{\textbf{b}}}_1-{{\textbf{b}}}_2\right) \\ &= \left( \frac{1}{n_1}+\frac{1}{n_2}\right) \text{tr}\left\{ {{\boldsymbol{\Sigma }}}{{\textbf{P}}}_{{{\textbf{A}}}}\right\} + \left( {\textbf{b}}_1-{{\textbf{b}}}_2\right) '{{\textbf{A}}}'{{\textbf{A}}} \left( {{\textbf{b}}}_1-{\textbf{b}}_2\right) , \quad {{\textbf{P}}}_{{{\textbf{A}}}}{\textbf{P}}_{{{\textbf{A}}}}={{\textbf{P}}}_{{{\textbf{A}}}}. \end{aligned}$$

A4: Proof of Theorem 3.3

We have

$$\begin{aligned} \left| e(i|j)-\Phi \left( \gamma ^{(i)}_0\right) \right|&= \left| {\mathbb{E}}\left[ \Phi \left( U_i/\sqrt{V_0}\right) \right] - \Phi \left( \gamma ^{(i)}_0\right) \right| , \quad i\in \{1, 2\}, \ i\ne j\\ &= \left| {\mathbb{E}}\left[ \Phi \left( U_i/\sqrt{V_0}\right) -\Phi \left( \gamma ^{(i)}_0\right) \right] \right| \\ &\le {\mathbb{E}}\left[ \left| \Phi \left( U_i/\sqrt{V_0}\right) -\Phi \left( \gamma ^{(i)}_0\right) \right| \right] . \end{aligned}$$

Using Lebesgue’s dominated convergence theorem and Lemma 3.2, we see that the sequence \(\left| \Phi \left( U_i/\sqrt{V_0}\right) - \Phi \left( \gamma ^{(i)}_0\right) \right|\) is uniformly integrable. Consequently, under Assumptions A1–A2 and Lemma 3.3, we have

$$\begin{aligned} {\mathbb{E}}\left[ \left| \Phi \left( U_i/\sqrt{V_0}\right) -\Phi \left( \gamma ^{(i)}_0 \right) \right| \right] \rightarrow 0. \end{aligned}$$

Therefore, we can assert that \(\Phi \left( \gamma ^{(i)}_0\right)\) provides an asymptotic approximation to e(i|j).

A5: Proof of Theorem 3.5, bias corrected Euclidean discriminant function when the mean parameter \({\widehat{\textbf{B}}}\) is weighted

For moments of \({\widehat{D}}_{EBC_2} \left( {\varvec{x}}\right) ,\) \({\mathbb{E}} \left[ \widehat{D}_{EBC_2}\left( {\varvec{x}}\right) \right]\) can be calculated as

$$\begin{aligned}&{\mathbb{E}}_{{\textbf{S}}}\left[ {\mathbb{E}}\left[ \widehat{D}_{EBC_2}|{\widehat{{\textbf{b}}}}_1, {\widehat{{\textbf{b}}}}_2, {\textbf{S}}\right] \right] \\ &\quad = {\mathbb{E}}_{{\textbf{S}}} \text{tr}\left\{ {\mathbb{E}} \left[ \left( {{\textbf{A}}}\widehat{{{\textbf{b}}}}_{1}-{\textbf{A}}\widehat{{{\textbf{b}}}}_{2}\right) \left( \left( {{\textbf{A}}}{\textbf{b}}^{i}-\frac{1}{2} \left( {{\textbf{A}}}\widehat{{{\textbf{b}}}}_{1}+{\textbf{A}}\widehat{{{\textbf{b}}}}_{2}\right) ' \right) | \widehat{{{\textbf{b}}}}_{1}, \widehat{{{\textbf{b}}}}_{2}, {{\textbf{S}}}\right) \right] \right\} \\ &\qquad +\frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}\right) ^{-1}{\textbf{A}}'\right) \\ &\quad = \left( {{\textbf{b}}}_{1}-{{\textbf{b}}}_{2}\right) '{\textbf{A}}'{{\textbf{A}}}{{\textbf{b}}}^{i}- \frac{1}{2}\frac{1}{n_1}\text{tr} {\mathbb{E}}\left[ {{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{S}}}^{-1}{\textbf{A}}\right) ^{-1} {{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{\textbf{A}} \left( {{\textbf{A}}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}{{\textbf{A}}}' \right] \\ &\qquad +\frac{1}{2}\frac{1}{n_2}\text{tr} \left\{ {\mathbb{E}}\left[ {{\textbf{A}}}\left( {{\textbf{A}}}'{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{\textbf{A}} \left( {{\textbf{A}}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}{{\textbf{A}}}'\right] \right\} \\ &\qquad -\frac{1}{2}\left( {{\textbf{b}}}_{1}-{\textbf{b}}_{2}\right) ' {{\textbf{A}}}'{{\textbf{A}}}\left( {{\textbf{b}}}_{1}+{\textbf{b}}_{2}\right) + \frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \\ &\qquad \cdot \text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}\right) ^{-1}{\textbf{A}}'\right) \\ &\quad = \left( {{\textbf{b}}}_{1}-{{\textbf{b}}}_{2}\right) '{\textbf{A}}'{{\textbf{A}}} \left( {\textbf{b}}_i-\frac{1}{2}\left( {\textbf{b}}_1+{\textbf{b}}_2\right) \right) - \frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \\ &\qquad \cdot \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \text{tr}{\mathbb{E}}\left[ {{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{S}}^{-1}{{\textbf{A}}}\right) ^{-1} {{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{\textbf{S}}^{-1}{{\textbf{A}}} \left( {{\textbf{A}}}^{\prime }{{\textbf{S}}}^{-1}{\textbf{A}}\right) ^{-1}{{\textbf{A}}}'\right] \\ &\qquad +\frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}\right) ^{-1}{\textbf{A}}'\right) \\ &\quad = \frac{1}{2}(-1)^{i+1}\Delta ^2-\frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \text{tr}{\mathbb{E}}\left[ {{\textbf{A}}}\left( {{\textbf{A}}}'{\textbf{S}}^{-1}{{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}' {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{{\textbf{A}}} \left( {{\textbf{A}}}^{\prime }{\textbf{S}}^{-1}{{\textbf{A}}} \right) ^{-1}{{\textbf{A}}}' \right] \\ &\qquad +\frac{1}{2}\left( \frac{1}{n_2}-\frac{1}{n_1}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}\right) ^{-1}{\textbf{A}}'\right) \\ &\quad = (-1)^{i+1}\frac{1}{2}\Delta ^2-\frac{1}{2}\left( \frac{1}{n_1}-\frac{1}{n_2}\right) \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \text{tr}\left( {\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}'\right) ^{-1}{\textbf{A}}'\right) . \end{aligned}$$
(19)

The result from von Rosen (2018, page 447) has been used to simplify (19).

Next, we calculate the variance of either group \(\pi _1\) or \(\pi _2\) conditioned on \(\widehat{{{\textbf{b}}}}_{1}\) and \(\widehat{{\textbf{b}}}_{2}.\) The conditional expectation of \({\mathbb{E}}[V_1]\) given \({{\textbf{S}}}\) is

$$\begin{aligned} {\mathbb{E}}\left[ V_1\right] ={\mathbb{E}}_{{\textbf{S}}}\left[ {\mathbb{E}}\left[ V_1|{\textbf{S}}\right] \right]&= {\mathbb{E}}_{{\textbf{S}}}\left[ {\mathbb{E}}\left[ \left( \widehat{{\textbf{b}}}_1-\widehat{{{\textbf{b}}}}_2\right) ^{\prime } {{\textbf{A}}}^{\prime } {{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( \widehat{{{\textbf{b}}}}_1-\widehat{{\textbf{b}}}_2\right) |{{\textbf{S}}}\right] \right] \\ &= {\mathbb{E}}_{{\textbf{S}}}\left[ \text{tr}\left( {{\textbf{A}}}^{\prime } {{\boldsymbol{\Sigma }}}{{\textbf{A}}} {\mathbb{E}}\left[ \left( \widehat{{\textbf{b}}}_1-\widehat{{{\textbf{b}}}}_2\right) \left( \widehat{{\textbf{b}}}_1-\widehat{{{\textbf{b}}}}_2\right) ^{\prime }|{{\textbf{S}}} \right] \right) \right] . \end{aligned}$$
(20)

From (20),

$$\begin{aligned}&{\mathbb{E}}_{{\textbf{S}}}\left[ {\mathbb{E}}\left[ V_1|{\textbf{S}}\right] \right] \\ &\quad = {\mathbb{E}}_{{\textbf{S}}} \Big [\text{tr}\Big \{{\textbf{A}}^{\prime } {{\boldsymbol{\Sigma }}}{{\textbf{A}}} \Big ( \frac{1}{n_1}\left( {\textbf{A}}^{\prime } {{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}^{\prime } {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{{\textbf{A}}} \left( {\textbf{A}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}\\ &\qquad +\frac{1}{n_2}\left( {{\textbf{A}}}^{\prime } {{\textbf{S}}}^{-1} {{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}^{\prime } {\textbf{S}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{{\textbf{A}}} \left( {\textbf{A}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}\Big )+ \left( {\textbf{b}}_1-{{\textbf{b}}}_2\right) \left( {{\textbf{b}}}_1-{\textbf{b}}_2\right) ^{\prime }\Big \}\Big ]\\ &\quad = \frac{n_1+n_2}{n_1 n_2} {\mathbb{E}}_{{\textbf{S}}}\left[ \text{tr}\left\{ {{\textbf{A}}}^{\prime } {{\boldsymbol{\Sigma }}}{{\textbf{A}}}\left( {{\textbf{A}}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}^{\prime } {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1} {{\textbf{A}}}\left( {{\textbf{A}}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}\right\} \right] \\ &\qquad +\left( {{\textbf{b}}}_1-{\textbf{b}}_2\right) ^{\prime } {{\textbf{A}}}^{\prime }{{\textbf{A}}} \left( {\textbf{b}}_1-{{\textbf{b}}}_2\right) \\ &\quad = \frac{n_1+n_2}{n_1 n_2} \text{tr}\left\{ {{\boldsymbol{\Sigma }}}{\mathbb{E}}_{{\textbf{S}}} \left[ {{\textbf{A}}} \left( {\textbf{A}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1} {{\textbf{A}}}^{\prime } {{\textbf{S}}}^{-1} {{\boldsymbol{\Sigma }}}{{\textbf{S}}}^{-1}{{\textbf{A}}} \left( {\textbf{A}}^{\prime }{{\textbf{S}}}^{-1}{{\textbf{A}}} \right) ^{-1}{\textbf{A}}^{\prime }\right] \right\} \\ &\qquad +\left( {{\textbf{b}}}_1-{\textbf{b}}_2\right) ^{\prime } {{\textbf{A}}}^{\prime }{{\textbf{A}}} \left( {\textbf{b}}_1-{{\textbf{b}}}_2\right) \\ &\quad = \frac{n_1+n_2}{n_1 n_2} \frac{n-r({\textbf{C}})-1}{n-r({\textbf{C}})-p+r({\textbf{A}})-1} \text{tr}\left\{ {{\boldsymbol{\Sigma }}}{\textbf{A}}\left( {\textbf{A}}'{{\boldsymbol{\Sigma }}}^{-1}{\textbf{A}}'\right) ^{-1}\right\} \\ &\qquad +\left( {{\textbf{b}}}_1-{\textbf{b}}_2\right) ^{\prime } {{\textbf{A}}}^{\prime }{{\textbf{A}}} \left( {\textbf{b}}_1-{{\textbf{b}}}_2\right) . \end{aligned}$$

A6:  Proof of Theorem 3.5

We have

$$\begin{aligned} \left| e(i|j)-\Phi \left( \gamma ^{(i)}\right) \right|&= \left| {\mathbb{E}}\left[ \Phi \left( U_i/\sqrt{V_1}\right) \right] - \Phi \left( \gamma ^{(i)}\right) \right| = \left| {\mathbb{E}}\left[ \Phi \left( U_i/\sqrt{V_1}\right) -\Phi \left( \gamma ^{(i)}\right) \right] \right| \\ &\le {\mathbb{E}}\left[ \left| \Phi \left( U_i/\sqrt{V_1}\right) -\Phi \left( \gamma ^{(i)}\right) \right| \right] . \end{aligned}$$

By Lebesgue’s dominated convergence theorem, Theorem 3.5 yields that the sequence \(\left\{ \left| \Phi \left( U_i/\sqrt{V_1}\right) -\Phi \left( \gamma ^{(i)} \right) \right| \right\}\) is uniformly integrable. Hence, under the Assumptions A1–A2 and Lemma 3.4

$$\begin{aligned} {\mathbb{E}}\left[ \left| \Phi \left( U_i/\sqrt{V_1}\right) -\Phi \left( \gamma ^{(i)} \right) \right| \right] \longrightarrow 0. \end{aligned}$$

Thus, we can see that \(\Phi \left( \gamma _0\right)\) provides an asymptotic approximation to e(i|j).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngailo, E.K., Nadarajah, S. Classification of repeated measurements using bias corrected Euclidean distance discriminant function. J. Korean Stat. Soc. 53, 281–305 (2024). https://doi.org/10.1007/s42952-023-00246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-023-00246-z

Keywords

Navigation