Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) December 13, 2023

A bibliographic survey of the structural chemistry of the Group 13 dithiophosphates and dithiophosphinates

  • Edward R. T. Tiekink EMAIL logo

Abstract

A survey of the crystallographically determined structures of the Group 13 dithiophosphates and dithiophosphinates is presented with a focus upon both the molecular structures and supramolecular association involving the heavy element. Only small numbers of aluminium(III) (two) and gallium(III) (one) structures are known and these along with the 10 indium(III) examples have a preponderance towards homoleptic species with most coordination geometries based on an octahedron owing to the presence of symmetrically or almost symmetrically chelating phosphorodithiolato ligands; the notable exception is the gallium species which has an approximately tetrahedral geometry as two of the dithiophosphinate ligands coordinate in a monodentate mode. Diverse molecular structures are noted for the four heteroleptic examples of the lighter Group 13 elements which assemble in their crystals employing intermolecular interactions that do not involve the central element, as with the homoleptic structures. A completely different situation is evident for the thallium(I)/(III) structures which display a diverse array of coordination geometries and which usually assemble via Tl⋯S triel-bonding interactions; in the supramolecular assembly of thallium(I) crystals, Tl(lone-pair)⋯π(aryl) interactions are often observed.


Corresponding author: Edward R. T. Tiekink, Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Coucouvanis, D. The chemistry of the dithioacid and 1,1-dithiolate complexes. Prog. Inorg. Chem. 1970, 11, 234–371. https://doi.org/10.1002/978047016612.Search in Google Scholar

2. Eisenberg, R. Structural systematics of 1,1- and 1,2-dithiolato chelates. Prog. Inorg. Chem. 1970, 12, 295–369. https://doi.org/10.1002/978047016613.Search in Google Scholar

3. Coucouvanis, D. The chemistry of the dithioacid and 1,1-dithiolate complexes, 1968–1977. Prog. Inorg. Chem. 1979, 26, 301–469. https://doi.org/10.1002/978047016627.Search in Google Scholar

4. Hogarth, G. Transition metal dithiocarbamates: 1978–2003. Prog. Inorg. Chem. 2005, 53, 71–561. https://doi.org/10.1002/0471725587.ch2.Search in Google Scholar

5. Heard, P. J. Main group dithiocarbamate complexes. Prog. Inorg. Chem. 2005, 53, 1–70. https://doi.org/10.1002/0471725587.ch1.Search in Google Scholar

6. Lee, S. M., Tiekink, E. R. T. A structural survey of poly-functional dithiocarbamate ligands and the aggregation patterns they sustain. Inorganics 2021, 9, 7. https://doi.org/10.3390/inorganics9010007.Search in Google Scholar

7. Winter, G. Inorganic xanthates: a structural perspective. Rev. Inorg. Chem. 1980, 2, 253–342.Search in Google Scholar

8. Tiekink, E. R. T., Winter, G. Inorganic xanthates: a structural perspective. Rev. Inorg. Chem. 1992, 12, 183–302. https://doi.org/10.1515/REVIC.1992.12.3-4.183.Search in Google Scholar

9. Tiekink, E. R. T., Haiduc, I. Stereochemical aspects of metal xanthate complexes: molecular structures and supramolecular self-assembly. Prog. Inorg. Chem. 2005, 54, 127–319. https://doi.org/10.1002/0471725560.ch3.Search in Google Scholar

10. Haiduc, I., Sowerby, D. B. Stereochemical aspects of phosphor-1,1-dithiolato metal complexes: coordination patterns, molecular structures and supramolecular associations in dithiophosphinates and related compounds. Polyhedron 1996, 15, 2469–2521. https://doi.org/10.1016/0277-5387(95)00554-4.Search in Google Scholar

11. van Zyl, W. E., Woollins, J. D. The coordination chemistry of dithiophosphonates: an emerging and versatile ligand class. Coord. Chem. Rev. 2013, 257, 718–731. https://doi.org/10.1016/j.ccr.2012.10.010.Search in Google Scholar

12. Cox, M. J., Tiekink, E. R. T. The diverse coordination patterns in the structures of zinc, cadmium and mercury bis(1,1-dithiolates). Rev. Inorg. Chem. 1997, 17, 1–23. https://doi.org/10.1515/REVIC.1997.17.1.1.Search in Google Scholar

13. Tiekink, E. R. T. Molecular architecture and supramolecular association in the zinc-triad 1,1-dithiolates. Steric control as a design element in crystal engineering? CrystEngComm 2003, 5, 101–113. https://doi.org/10.1039/B301318A.Search in Google Scholar

14. Tiekink, E. R. T. Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 2018, 8, 292. https://doi.org/10.3390/cryst8070292.Search in Google Scholar

15. Tiekink, E. R. T. Aggregation patterns in the crystal structures of organometallic Group XV 1,1-dithiolat.es: the influence of the Lewis acidity of the central atom, metal- and ligand-bound steric bulk, and coordination potential of the 1,1-dithiolate ligands upon supramolecular architecture. CrystEngComm 2006, 8, 104–118. https://doi.org/10.1039/B517339F.Search in Google Scholar

16. Tiekink, E. R. T., Zukerman-Schpector, J. Stereochemical activity of lone pairs of electrons and supramolecular aggregation patterns based on secondary interactions involving tellurium in its 1,1-dithiolate structures. Coord. Chem. Rev. 2010, 254, 46–76. https://doi.org/10.1016/j.ccr.2009.09.007.Search in Google Scholar

17. Alcock, N. W. Secondary bonding to nonmetallic elements. Adv. Inorg. Chem. Radiochem. 1972, 15, 1–58. https://doi.org/10.1016/S0065-2792(08)60016-3.Search in Google Scholar

18. Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding: the sigma-hole. J. Mol. Model. 2007, 13, 291–296. https://doi.org/10.1007/s00894-006-0130-2.Search in Google Scholar PubMed

19. Kolář, M. H., Hobza, P. Computer modeling of halogen bonds and other σ-hole interactions. Chem. Rev. 2016, 116, 5155–5187. https://doi.org/10.1021/acs.chemrev.5b00560.Search in Google Scholar PubMed

20. Politzer, P., Murray, J. S. σ-Hole interactions: perspectives and misconceptions. Crystals 2017, 7, 212. https://doi.org/10.3390/cryst7070212.Search in Google Scholar

21. Grabowski, S. J. Boron and other Triel Lewis acid centers: from hypovalency to hypervalency. ChemPhysChem 2014, 15, 2985–2993. https://doi.org/10.1002/cphc.201402344.Search in Google Scholar PubMed

22. Grabowski, S. J. π-Hole bonds: boron and aluminum Lewis acid centers. ChemPhysChem 2015, 16, 1470–1479. https://doi.org/10.1002/cphc.201402876.Search in Google Scholar PubMed

23. Tiekink, E. R. T. Supramolecular association via Hg⋯S secondary-bonding interactions in crystals of organomercury(II) species: a survey of the Cambridge Structure Database. Crystals 2023, 13, 385. https://doi.org/10.3390/cryst13030385.Search in Google Scholar

24. Gomila, R. M., Frontera, A., Tiekink, E. R. T. Supramolecular aggregation featuring Hg⋯S secondary-bonding interactions in crystals of mercury(II) species augmented by computational chemistry calculations. CrystEngComm 2023, 25, 5262–5285; https://doi.org/10.1039/d3ce00590a.Search in Google Scholar

25. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. https://doi.org/10.1107/S2052520616003954.Search in Google Scholar PubMed PubMed Central

26. Spek, A. L. checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 1–11. https://doi.org/10.1107/S2056989019016244.Search in Google Scholar PubMed PubMed Central

27. Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany, 2006.Search in Google Scholar

28. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J., Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 389–397. https://doi.org/10.1107/s0108768102003324.Search in Google Scholar PubMed

29. Davies, R. P., Gimenez, M. A., Patel, L., White, A. J. P. Aluminium complexes with thio-phosphorus ligands: syntheses and characterisations of [Al2(CyPS3)2(CyPHS2)2] and [Al(S2PPh2)3]. Dalton Trans. 2008, 5705–5707. https://doi.org/10.1039/B813427H.Search in Google Scholar

30. Park, J.-H., O’Brien, P., White, A. J. P., Williams, D. J. Variable coordination modes in dialkyldithiophosphinato complexes of group 13 metals: the X-ray single crystal structures of tris(diisobutyldithiophosphinato)gallium(III) and -indium(III). Inorg. Chem. 2001, 40, 3629–3631. https://doi.org/10.1021/ic001331f.Search in Google Scholar PubMed

31. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. https://doi.org/10.1021/j100785a001.Search in Google Scholar

32. Coggon, P., Lebedda, J. D., McPhail, A. T., Palmer, R. A. Crystal structure of tris(diethyldithiophosphato)indium(III). J. Chem. Soc. D 1970, 78–79. https://doi.org/10.1039/C29700000078.Search in Google Scholar

33. Liu, X.-Z., Xue, H., Zhao, J., Song, Y.-L., Zang, S.-L. Synthesis and crystal structure of In[(C2H5O)2PS2]3. Chem. J. Chin. Univ. 1999, 20, 196–198.Search in Google Scholar

34. Pahari, D., Jain, V. K., Patel, R. P. Synthesis and characterization of dialkyldithiophosphate complexes of indium(III). Main Group Met. Chem. 1998, 21, 261–270. https://doi.org/10.1515/MGMC.1998.21.5.261.Search in Google Scholar

35. Ng, S. W. Space group changes for dichlorodicyclopentyl (4,4′-dimethyl-2,2′-bipyridine)tin(IV), tris(di-i-propyldithiophosphato) indium(III), (3,14-dimethyl-2,6,13,17-tetraazotricyclo[14,4,01.18,07.12]docosane)zinc(II) chromate pentahydrate and diethyl(1,4-diazabicyclo[2,2,2]octane)zinc(II). Main Group Met. Chem. 1999, 22, 447–452. https://doi.org/10.1515/MGMC.1999.22.7.447.Search in Google Scholar

36. Firdoos, T., Kumar, P., Gomila, R. M., Frontera, A., Kamal, Pandey, S. K. New complexes of indium(III) diaryldithiophosphates: structural characterization and insight into supramolecular interactions. Polyhedron 2022, 226, 116094. https://doi.org/10.1016/j.poly.2022.116094.Search in Google Scholar

37. Zukerman-Schpector, J., Haiduc, I., Silvestru, C., Cea-Olivares, R. Crystal structures of antimony and indium phosphinodithioates, M(S2PR2)3 (M = Sb, R = Et; M = In, R = Me, Ph). Is the lone pair responsible for the structural differences? Polyhedron 1995, 14, 3087–3094. https://doi.org/10.1016/0277-5387(95)00094-9.Search in Google Scholar

38. Svensson, G., Albertsson, J. The crystal structures of the tris(diethyldithiophosphinato) complexes of Bi(III) and In(III). Acta Chem. Scand. 1989, 43, 511–517. https://doi.org/10.3891/acta.chem.scand.43-0511.Search in Google Scholar

39. Pahari, D., Jain, V. K., Tiekink, E. R. T. Mixed oxydiethanethiolate/dithiophosphate complexes of indium(III). Main Group Met. Chem. 1998, 21, 293–300. https://doi.org/10.1515/MGMC.1998.21.5.293.Search in Google Scholar

40. Pahari, D., Jain, V. K., Tiekink, E. R. T. Crystal structure of bis(O,O-diisopropylphosphorodithioato-κS,κS′)-bis[μ-[2-(mercapto-κS)ethoxy-κO]ethanethiolato(2-)κS:κS]-diindium, [(iPrO)2PS2In(SCH2CH2OCH2CH2S)2InS2P(OiPr)2]. Z. Kristallogr. – New Cryst. Struct. 2000, 215, 447–448. https://doi.org/10.1515/ncrs-2000-0369.Search in Google Scholar

41. Malik, M. A., Afzaal, M., O’Brien, P., Halliwell, M. Synthesis of novel mixed indium(III) chalcogenolato complexes: potential precursors for indium chalcogenides. Polyhedron 2006, 25, 864–868. https://doi.org/10.1016/j.poly.2005.09.012.Search in Google Scholar

42. Sarker, J. C., Hogarth, G. Dithiocarbamate complexes as single source precursors to nanoscale binary, ternary and quaternary metal sulfides. Chem. Rev. 2021, 121, 6057–6123. https://doi.org/10.1021/acs.chemrev.0c01183.Search in Google Scholar PubMed

43. Grabowski, S. J. The nature of triel bonds, a case of B and Al centres bonded with electron rich sites. Molecules 2020, 25, 2703. https://doi.org/10.3390/molecules25112703.Search in Google Scholar PubMed PubMed Central

44. Grabowski, S. J. Triel bond and coordination of triel centres – comparison with hydrogen bond interaction. Coord. Chem. Rev. 2020, 407, 213171. https://doi.org/10.1016/j.ccr.2019.213171.Search in Google Scholar

45. Liu, X., Xue, H., Zhao, J., Zang, S., Song, Y. Synthesis and crystal structure of Tl[(C2H5O)2PS2]. Rare Met. – Beijing – Engl. Ed. 1998, 17, 232–237.Search in Google Scholar

46. Ivanov, A. V., Konfederatov, V. A., Gerasimenko, A. V., Larsson, A.-K. Polymeric thallium(I) O,O′-diisopropyl dithiophosphate [Tl{S2P(O-iso-C3H7)2}]n: synthesis, structure, and 13C and 31P CP/MAS NMR spectra. Russ. J. Coord. Chem. 2009, 35, 857–863. https://doi.org/10.1134/S1070328409110116.Search in Google Scholar

47. Firdoos, T., Kumar, P., Radha, A., Gomila, R. M., Frontera, A., Sood, P., Pandey, S. K. An insight into triel bonds in O,O′-diarylphosphorodithioates of thallium(I): experimental and theoretical investigations. New J. Chem. 2022, 46, 832–843. https://doi.org/10.1039/d1nj04852j.Search in Google Scholar

48. Firdoos, T., Kumar, P., Sharma, N., Gomila, R. M., Frontera, A., Sood, P., Pandey, S. K. Thallium(I) phosphorodithioates containing intra- and intermolecular π-hole triel bonds. CrystEngComm 2023, 25, 3777–3789. https://doi.org/10.1039/d3ce00396e.Search in Google Scholar

49. Esperas, S., Husebye, S. The crystal and molecular structure of diethyldithiophosphinatothallium(I). Acta Chem. Scand. A 1974, 28, 1015–1020. https://doi.org/10.3891/acta.chem.scand.28a-1015.Search in Google Scholar

50. Hu, S.-Z., Zhou, Z.-H., Xi, Z.-X., Robertson, B. E. A comparative study of crystallographic van der Waals radii. Z. Kristallogr. 2014, 229, 517–523. https://doi.org/10.1515/zkri-2014-1726.Search in Google Scholar

51. Balmohammadi, Y., Khavasi, H. R., Naghavi, S. S. Existence of untypical halogen-involving interactions in crystal packings: a statistical and first-principles study. CrystEngComm 2020, 22, 2756–2765. https://doi.org/10.1039/C9CE01885A.Search in Google Scholar

52. Politzer, P., Murray, J. S. The use and misuse of van der Waals radii. Struct. Chem. 2021, 32, 623–629. https://doi.org/10.1007/s11224-020-01713-7.Search in Google Scholar

53. Gomila, R. M., Tiekink, E. R. T., Frontera, A. A computational chemistry investigation of the influence of steric bulk of dithiocarbamato bound organic substituents upon spodium bonding in three homoleptic mercury(II) bis(N,N-dialkyldithiocarbamato) compounds for alkyl = ethyl, isobutyl, and cyclohexyl. Inorganics 2023, 11, https://doi.org/10.3390/inorganics11120468.Search in Google Scholar

54. Caracelli, I., Haiduc, I., Zukerman-Schpector, J., Tiekink, E. R. T. Coord. Chem. Rev. 2014, 281, 50–63. https://doi.org/10.1016/j.ccr.2014.09.001.Search in Google Scholar

55. Caracelli, I., Zukerman-Schpector, J., Haiduc, I., Tiekink, E. R. T. Main group metal lone-pair Tl⋯π(arene) interactions: a new bonding mode for supramolecular associations. CrystEngComm 2016, 18, 6960–6978. https://doi.org/10.1039/C6CE01460G.Search in Google Scholar

56. Schollmeyer, D., Shishkin, O. V., Rühl, T., Vysotsky, M. O. OH–π and halogen–π interactions as driving forces in the crystal organisations of tri-bromo and tri-iodo trityl alcohols. CrystEngComm 2008, 10, 715–723. https://doi.org/10.1039/B716442D.Search in Google Scholar

57. Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc., Dalton Trans. 2000, 3885–3896. https://doi.org/10.1039/B003010O.Search in Google Scholar

58. Tiekink, E. R. T. Supramolecular assembly based on “emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 2017, 345, 209–228. https://doi.org/10.1016/j.ccr.2017.01.009.Search in Google Scholar

59. Casas, J. S., Castellano, E. E., Castiñeiras, A., Sánchez, A., Sordo, J., Vázquez-López, E. M., Zukerman-Schpector, J. Protodemetallation reactions of some diphenylthallium(III) compounds with dicyclohexyldithiophosphinic acid. Crystal and molecular structures of [TlPh2{S2P(C6H11)2}], [TlPh{S2P(C6H11)2}2] and [Tl{S2P(C6H11)2}3]·CHCl3. J. Chem. Soc., Dalton Trans. 1995, 1403–1409. https://doi.org/10.1039/DT9950001403.Search in Google Scholar

60. Carballo, R., Casas, J. S., Castellano, E. E., Sánchez, A., Sordo, J., Vázquez-López, E. M., Zukerman-Schpector, J. Diorganothallium(III) diethyldithiophosphinates: crystal and molecular structures of [TIMe2(S2PEt2)] and [TIPh2(S2PEt2)]. Polyhedron 1997, 16, 3609–3614. https://doi.org/10.1016/S0277-5387(97)00109-5.Search in Google Scholar

61. Casas, J. S., Sánchez, A., Sordo, J., Vázquez-López, E. M., Castellano, E. E., Zukerman-Schpector, J. Dimethylthallium(III) compounds of diphenyl dithiophosphinate. Crystal and molecular structure of [TlMe2(S2PPh2)] and [Et4N] [TlMe2(S2PPh2)2]. Polyhedron 1992, 11, 2889–2896. https://doi.org/10.1016/S0277-5387(00)83592-5.Search in Google Scholar

62. Casas, J. S., Sánchez, A., Sordo, J., Vázquez-López, E. M., Carballo, R., Maichle-Mössmer, C. Diphenyldithiophosphinates of diphenylthallium(III). Crystal and molecular structure of [Et4N] [TlPh2(S2PPh2)2]. Polyhedron 1996, 15, 861–865. https://doi.org/10.1016/0277-5387(95)00335-4.Search in Google Scholar

63. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., Verschoor, C. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Daltons Trans. 1984, 1349–1356. https://doi.org/10.1039/DT9840001349.Search in Google Scholar

64. Singh, O. P., Mehrotra, R. K., Srivastava, G. Metal and organometal complexes of phosphorus oxy and thio acids. Part VII. O,O′-dialkyl(alkylene) dithiophosphates of boron. Phosphorus, Sulfur, Silicon Relat. Elem. 1991, 60, 147–158. https://doi.org/10.1080/10426509108036776.Search in Google Scholar

65. Nizamov, I. Y., Sergeenko, G. N., Batyeva, E. S., Azancheev, N. M., Al’fonsov, V. A. Reactions of 1, 3, 2, 4-dithiadiphosphetane-2, 4-disulfides with alkyl borates. Main Group Chem. 2000, 3, 129–135. https://doi.org/10.1080/13583140012331339099.Search in Google Scholar

66. Shah, F. U., Glavatskih, S., Höglund, E., Lindberg, M., Antzutkin, O. N. Interfacial antiwear and physicochemical properties of alkylborate-dithiophosphates. ACS Appl. Mater. Interfaces 2011, 3, 956–968. https://doi.org/10.1021/am101203t.Search in Google Scholar PubMed

Received: 2023-10-19
Accepted: 2023-11-28
Published Online: 2023-12-13
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0045/html
Scroll to top button